Skip to main content

Model Tuning and Validation

  • Chapter
  • First Online:
Modeling and Control Strategies for a Fuel Cell System

Part of the book series: Springer Theses ((Springer Theses))

  • 222 Accesses

Abstract

For fuel cell system, linear models cannot provide essential information of the system performance since the nonlinear and time-varying behaviors cannot be ignored. Moreover, the detailed knowledge of the fuel cell structure may not be available. Besides, the detailed model of the fuel cell is complex to be useful for control design. To enhance the model accuracy for the control-oriented nonlinear model, the model identification method can be applied to tune the dominating structural model errors. However, the nonlinearity leads to some difficulties of obtaining transfer functions and state-space equations through the simple linear model identification method. Motivated by this fact, the nonlinear system identification is mainly considered in order to understand how the fuel cell system works and to deal with tuning the dominating structural model errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schoukens J, Ljung L (2019) Nonlinear system identification: a user-oriented road map. IEEE Control Syst Mag 39(6):28–99

    Article  MATH  Google Scholar 

  2. Schrangl P, Tkachenko P, del Re L (2020) Iterative model identification of nonlinear systems of unknown structure: systematic data-based modeling utilizing design of experiments. IEEE Control Syst Mag 40(3):26–48

    Article  MATH  Google Scholar 

  3. Secanell M, Carnes B, Suleman A, Djilali N (2007) Numerical optimization of proton exchange membrane fuel cell cathodes. Electrochim Acta 52(7):2668–2682

    Article  Google Scholar 

  4. Ohenoja M, Leiviskä K (2010) Validation of genetic algorithm results in a fuel cell model. Int J Hydrogen Energy 35(22):12618–12625

    Article  Google Scholar 

  5. Bozorgmehri S, Hamedi M (2012) Modeling and optimization of anode-supported solid oxide fuel cells on cell parameters via artificial neural network and genetic algorithm. Fuel Cells 12(1):11–23

    Article  Google Scholar 

  6. Yang J, Li X, Jiang JH, Jian L, Zhao L, Jiang JG, Wu XG, Xu LH (2011) Parameter optimization for tubular solid oxide fuel cell stack based on the dynamic model and an improved genetic algorithm. Int J Hydrogen Energy 36(10):6160–6174

    Article  Google Scholar 

  7. Outeiro MT, Chibante R, Carvalho AS, de Almeida AT (2008) A parameter optimized model of a proton exchange membrane fuel cell including temperature effects

    Google Scholar 

  8. Cheng J, Zhang G (2014) Parameter fitting of PEMFC models based on adaptive differential evolution. Int J Electr Power Energy Syst 62:189–198

    Article  Google Scholar 

  9. Gong W, Cai Z, Yang J, Li X, Jian L (2014) Parameter identification of an SOFC model with an efficient, adaptive differential evolution algorithm. Int J Hydrogen Energy 39(10):5083–5096

    Article  Google Scholar 

  10. Jiang B, Wang N, Wang L (2014) Parameter identification for solid oxide fuel cells using cooperative barebone particle swarm optimization with hybrid learning. Int J Hydrogen Energy 39(1):532–542

    Article  Google Scholar 

  11. Salim R, Nabag M, Noura H, Fardoun A (2015) The parameter identification of the Nexa 1.2 kW PEMFC’s model using particle swarm optimization. Renew Energy 82:26–34

    Article  Google Scholar 

  12. Ye M, Wang X, Yousheng X (2009) Parameter identification for proton exchange membrane fuel cell model using particle swarm optimization. Int J Hydrogen Energy 34(2):981–989

    Article  Google Scholar 

  13. Bao S, Ebadi A, Toughani M, Dalle J, Maseleno A, Yıldızbası A et al (2020) A new method for optimal parameters identification of a PEMFC using an improved version of monarch butterfly optimization algorithm. Int J Hydrogen Energy 45(35):17882–17892

    Article  Google Scholar 

  14. Sultan HM, Menesy AS, Kamel S, Selim A, Jurado F (2020) Parameter identification of proton exchange membrane fuel cells using an improved SALP swarm algorithm. Energy Convers Manage 224:113341

    Article  Google Scholar 

  15. Yu D, Wang Y, Liu H, Jermsittiparsert K, Razmjooy N (2019) System identification of PEM fuel cells using an improved Elman neural network and a new hybrid optimization algorithm. Energy Rep 5:1365–1374

    Article  Google Scholar 

  16. Askarzadeh A, Rezazadeh A (2011) Optimization of PEMFC model parameters with a modified particle swarm optimization. Int J Energy Res 35(14):1258–1265

    Article  Google Scholar 

  17. Li Q, Chen W, Wang Y, Liu S, Jia J (2011) Parameter identification for PEM fuel-cell mechanism model based on effective informed adaptive particle swarm optimization. IEEE Trans Industr Electron 58(6):2410–2419

    Article  Google Scholar 

  18. Slotine JJE, Li W (1991) Applied nonlinear control. Prentice Hall, New Jersey

    MATH  Google Scholar 

  19. Asghari S, Mokmeli A, Samavati M (2010) Study of PEM fuel cell performance by electrochemical impedance spectroscopy. Int J Hydrogen Energy 35(17):9283–9290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashan Xing .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xing, Y. (2023). Model Tuning and Validation. In: Modeling and Control Strategies for a Fuel Cell System. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-031-15112-5_3

Download citation

Publish with us

Policies and ethics