Skip to main content

Mechanisms and Consequences of Genetic Variation in Hepatitis C Virus (HCV)

  • Chapter
  • First Online:
Viral Fitness and Evolution

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 439))

Abstract

Chronic infection with hepatitis C virus (HCV) is an important contributor to the global incidence of liver diseases, including liver cirrhosis and hepatocellular carcinoma. Although common for single-stranded RNA viruses, HCV displays a remarkable high level of genetic diversity, produced primarily by the error-prone viral polymerase and host immune pressure. The high genetic heterogeneity of HCV has led to the evolution of several distinct genotypes and subtypes, with important consequences for pathogenesis, and clinical outcomes. Genetic variability constitutes an evasion mechanism against immune suppression, allowing the virus to evolve epitope escape mutants that avoid immune recognition. Thus, heterogeneity and variability of the HCV genome represent a great hindrance for the development of vaccines against HCV. In addition, the high genetic plasticity of HCV allows the virus to rapidly develop antiviral resistance mutations, leading to treatment failure and potentially representing a major hindrance for the cure of chronic HCV patients. In this chapter, we will present the central role that genetic diversity has in the viral life cycle and epidemiology of HCV. Incorporation errors and recombination, both the result of HCV polymerase activity, represent the main mechanisms of HCV evolution. The molecular details of both mechanisms have been only partially clarified and will be presented in the following sections. Finally, we will discuss the major consequences of HCV genetic diversity, namely its capacity to rapidly evolve antiviral and immunological escape variants that represent an important limitation for clearance of acute HCV, for treatment of chronic hepatitis C and for broadly protective vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed R et al (2021) Sofosbuvir/velpatasvir—a promising treatment for chronic hepatitis C virus infection. Cureus 13(8):e17237

    Google Scholar 

  • Argentini C et al (2009) HCV genetic variability: from quasispecies evolution to genotype classification. Future Microbiol 4(3):359–373

    Article  CAS  Google Scholar 

  • Asahina Y et al (2005) Mutagenic effects of ribavirin and response to interferon/ribavirin combination therapy in chronic hepatitis C. J Hepatol 43(4):623–629

    Article  CAS  Google Scholar 

  • Augestad EH, Bukh J, Prentoe J (2021) Hepatitis C virus envelope protein dynamics and the link to hypervariable region 1. Curr Opin Virol 50:69–75

    Article  CAS  Google Scholar 

  • Austermann-Busch S, Becher P (2012) RNA structural elements determine frequency and sites of nonhomologous recombination in an animal plus-strand RNA virus. J Virol 86(13):7393–7402

    Article  CAS  Google Scholar 

  • Avo AP et al (2013) Hepatitis C virus subtyping based on sequencing of the C/E1 and NS5B genomic regions in comparison to a commercially available line probe assay. J Med Virol 85(5):815–822

    Article  CAS  Google Scholar 

  • Bagaglio S, Uberti-Foppa C, Morsica G (2017) Resistance Mechanisms in Hepatitis C Virus: implications for direct-acting antiviral use. Drugs 77(10):1043–1055

    Article  CAS  Google Scholar 

  • Bailey JR et al (2015) Naturally selected hepatitis C virus polymorphisms confer broad neutralizing antibody resistance. J Clin Invest 125(1):437–447

    Article  Google Scholar 

  • Barnard R et al (2016) Primer ID ultra-deep sequencing reveals dynamics of drug resistance-associated variants in breakthrough hepatitis C viruses: relevance to treatment outcome and resistance screening. Antivir Ther 21(7):567–577

    Article  CAS  Google Scholar 

  • Baroth M et al (2000) Insertion of cellular NEDD8 coding sequences in a pestivirus. Virology 278(2):456–466

    Article  CAS  Google Scholar 

  • Bartenschlager R, Lohmann V (2000) Replication of hepatitis C virus. J Gen Virol 81(Pt 7):1631–1648

    CAS  Google Scholar 

  • Bartosch B et al (2003) Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-B1 scavenger receptor. J Biol Chem 278(43):41624–41630

    Article  CAS  Google Scholar 

  • Bebenek A, Ziuzia-Graczyk I (2018) Fidelity of DNA replication-a matter of proofreading. Curr Genet 64(5):985–996

    Article  CAS  Google Scholar 

  • Becher P, Tautz N (2011) RNA recombination in pestiviruses: cellular RNA sequences in viral genomes highlight the role of host factors for viral persistence and lethal disease. RNA Biol 8(2):216–224

    Article  CAS  Google Scholar 

  • Becher P, Orlich M, Thiel HJ (2001) RNA recombination between persisting pestivirus and a vaccine strain: generation of cytopathogenic virus and induction of lethal disease. J Virol 75(14):6256–6264

    Article  CAS  Google Scholar 

  • Belling J (1933) Crossing over and gene rearrangement in flowering plants. Genetics 18(4):388–413

    Article  CAS  Google Scholar 

  • Biswal BK et al (2005) Crystal structures of the RNA-dependent RNA polymerase genotype 2a of hepatitis C virus reveal two conformations and suggest mechanisms of inhibition by non-nucleoside inhibitors. J Biol Chem 280(18):18202–18210

    Article  CAS  Google Scholar 

  • Bley H, Schobel A, Herker E (2020) Whole Lotta lipids-from HCV RNA replication to the mature viral particle. Int J Mol Sci 21(8):2888

    Article  CAS  Google Scholar 

  • Bordería AV, Rozen-Gagnon K, Vignuzzi M (2016) Fidelity variants and RNA quasispecies. In: Domingo E, Schuster P (eds) Quasispecies: from theory to experimental systems. Springer International Publishing, Cham, pp 303–322

    Google Scholar 

  • Borgia SM et al (2018) Identification of a novel hepatitis C virus genotype from Punjab, India: expanding classification of hepatitis C virus into 8 genotypes. J Infect Dis 218(11):1722–1729

    Article  Google Scholar 

  • Bowen DG, Walker CM (2005) Mutational escape from CD8+ T cell immunity: HCV evolution, from chimpanzees to man. J Exp Med 201(11):1709–1714

    Article  CAS  Google Scholar 

  • Bowman RR, Hu WS, Pathak VK (1998) Relative rates of retroviral reverse transcriptase template switching during RNA- and DNA-dependent DNA synthesis. J Virol 72(6):5198–5206

    Article  CAS  Google Scholar 

  • Bukh J (2016) The history of hepatitis C virus (HCV): basic research reveals unique features in phylogeny, evolution and the viral life cycle with new perspectives for epidemic control. J Hepatol 65(1 Suppl):S2–S21

    Article  Google Scholar 

  • Bukh J, Purcell RH, Miller RH (1993) At least 12 genotypes of hepatitis C virus predicted by sequence analysis of the putative E1 gene of isolates collected worldwide. Proc Natl Acad Sci USA 90(17):8234–8238

    Article  CAS  Google Scholar 

  • Bukh J, Miller RH, Purcell RH (1995) Genetic hetrogeneity of hepatitis C virus: quasispecies and genotypes. Semin Liver Dis 15(1):41–63

    Article  CAS  Google Scholar 

  • Bukh J et al (2015) Immunoglobulin with high-titer in vitro cross-neutralizing hepatitis C virus antibodies passively protects chimpanzees from homologous, but not heterologous, challenge. J Virol 89(17):9128–9132

    Article  CAS  Google Scholar 

  • Callendret B et al (2011) Transmission of clonal hepatitis C virus genomes reveals the dominant but transitory role of CD8+ T cells in early viral evolution. J Virol 85(22):11833–11845

    Article  CAS  Google Scholar 

  • Carvajal-Rodriguez A, Crandall KA, Posada D (2007) Recombination favors the evolution of drug resistance in HIV-1 during antiretroviral therapy. Infect Genet Evol 7(4):476–483

    Article  CAS  Google Scholar 

  • Ceccherini-Silberstein F et al (2018) Viral resistance in HCV infection. Curr Opin Virol 32:115–127

    Article  Google Scholar 

  • Chevaliez S et al (2007) Analysis of ribavirin mutagenicity in human hepatitis C virus infection. J Virol 81(14):7732–7741

    Article  CAS  Google Scholar 

  • Colpitts CC, Tsai PL, Zeisel MB (2020) Hepatitis C virus entry: an intriguingly complex and highly regulated process. Int J Mol Sci 21(6):2091

    Article  CAS  Google Scholar 

  • Cosset FL et al (2020) HCV interplay with lipoproteins: inside or outside the cells? Viruses 12(4):434

    Article  CAS  Google Scholar 

  • Cuypers L et al (2016) Impact of HCV genotype on treatment regimens and drug resistance: a snapshot in time. Rev Med Virol 26(6):408–434

    Article  CAS  Google Scholar 

  • D’Ambrosio R et al (2017) Direct-acting antivirals: the endgame for hepatitis C? Curr Opin Virol 24:31–37

    Article  CAS  Google Scholar 

  • Dazert E et al (2009) Loss of viral fitness and cross-recognition by CD8+ T cells limit HCV escape from a protective HLA-B27-restricted human immune response. J Clin Invest 119(2):376–386

    CAS  Google Scholar 

  • Delviks-Frankenberry K et al (2011) Mechanisms and factors that influence high frequency retroviral recombination. Viruses 3(9):1650–1680

    Article  CAS  Google Scholar 

  • Delviks KA, Hu WS, Pathak VK (1997) Psi- vectors: murine leukemia virus-based self-inactivating and self-activating retroviral vectors. J Virol 71(8):6218–6224

    Article  CAS  Google Scholar 

  • Dietz J et al (2013) Deep sequencing reveals mutagenic effects of ribavirin during monotherapy of hepatitis C virus genotype 1-infected patients. J Virol 87(11):6172–6181

    Article  CAS  Google Scholar 

  • Domingo E, Perales C (2018) quasispecies and virus. Eur Biophys J 47(4):443–457

    Article  CAS  Google Scholar 

  • Dubuisson J (2007) Hepatitis C virus proteins. World J Gastroenterol 13(17):2406–2415

    Article  CAS  Google Scholar 

  • Dultz G et al (2021) Epistatic interactions promote persistence of NS3-Q80K in HCV infection by compensating for protein folding instability. J Biol Chem 297(3):101031

    Article  CAS  Google Scholar 

  • Dustin LB, Rice CM (2007) Flying under the radar: the immunobiology of hepatitis C. Ann Rev Immunol 25:71–99

    Article  CAS  Google Scholar 

  • Duverlie G et al (1998) Sequence analysis of the NS5A protein of European hepatitis C virus 1b isolates and relation to interferon sensitivity. J Gen Virol 79(Pt 6):1373–1381

    Article  CAS  Google Scholar 

  • Echeverria N et al (2015) Hepatitis C virus genetic variability and evolution. World J Hepatol 7(6):831–845

    Article  Google Scholar 

  • Egerman RS (2019) New antiviral agents for treatment of hepatitis C. Clin Obstet Gynecol 62(4):823–834

    Article  Google Scholar 

  • Enomoto N et al (1995) Comparison of full-length sequences of interferon-sensitive and resistant hepatitis C virus 1b. Sensitivity to interferon is conferred by amino acid substitutions in the NS5A region. J Clin Invest 96(1):224–230

    Article  CAS  Google Scholar 

  • Erickson AL et al (2001) The outcome of hepatitis C virus infection is predicted by escape mutations in epitopes targeted by cytotoxic T lymphocytes. Immunity 15(6):883–895

    Article  CAS  Google Scholar 

  • Evans MJ et al (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446(7137):801–805

    Article  CAS  Google Scholar 

  • Fahnøe U et al (2021) Global evolutionary analysis of chronic hepatitis C patients revealed significant effect of baseline viral resistance, including novel non-target sites, for DAA-based treatment and retreatment outcome. J Viral Hepat 28(2):302–316

    Article  Google Scholar 

  • Farci P (2011) New insights into the HCV quasispecies and compartmentalization. Semin Liver Dis 31(4):356–374

    Article  CAS  Google Scholar 

  • Farci P, Purcell RH (2000) Clinical significance of hepatitis C virus genotypes and quasispecies. Semin Liver Dis 20(1):103–126

    CAS  Google Scholar 

  • Farci P et al (1994) Prevention of hepatitis C virus infection in chimpanzees after antibody-mediated in vitro neutralization. Proc Natl Acad Sci USA 91(16):7792–7796

    Article  CAS  Google Scholar 

  • Farci P et al (2000) The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science 288(5464):339–344

    Article  CAS  Google Scholar 

  • Feld JJ et al (2017) Ribavirin revisited in the era of direct-acting antiviral therapy for hepatitis C virus infection. Liver Int 37(1):5–18

    Article  CAS  Google Scholar 

  • Feld JJ et al (2015) Sofosbuvir and velpatasvir for HCV genotype 1, 2, 4, 5, and 6 infection. N Engl J Med 373(27):2599–2607

    Article  CAS  Google Scholar 

  • Fricke J, Gunn M, Meyers G (2001) A family of closely related bovine viral diarrhea virus recombinants identified in an animal suffering from mucosal disease: new insights into the development of a lethal disease in cattle. Virology 291(1):77–90

    Article  CAS  Google Scholar 

  • Fried MW, Hadziyannis SJ (2004) Treatment of chronic hepatitis C infection with peginterferons plus ribavirin. Semin Liver Dis 24(Suppl 2):47–54

    Article  CAS  Google Scholar 

  • Gallei A et al (2004) RNA recombination in vivo in the absence of viral replication. J Virol 78(12):6271–6281

    Article  CAS  Google Scholar 

  • Galli A, Bukh J (2014) Comparative analysis of the molecular mechanisms of recombination in hepatitis C virus. Trends Microbiol 22(6):354–364

    Article  CAS  Google Scholar 

  • Galli A et al (2018) Antiviral effect of Ribavirin against HCV associated with increased frequency of G-to-A and C-to-U transitions in infectious cell culture model. Sci Rep 8(1):4619

    Article  Google Scholar 

  • Galli A, Fahnøe U, Bukh J (2022) High recombination rate of hepatitis C virus revealed by a green fluorescent protein reconstitution cell system. Virus Evol 8(1)

    Google Scholar 

  • Gao F et al (2007) Recombinant hepatitis C virus in experimentally infected chimpanzees. J Gen Virol 88(Pt 1):143–147

    Google Scholar 

  • Gmyl AP et al (1999) Nonreplicative RNA recombination in poliovirus. J Virol 73(11):8958–8965

    Article  CAS  Google Scholar 

  • Gonzalez-Candelas F, Lopez-Labrador FX, Bracho MA (2011) Recombination in hepatitis C virus. Viruses 3(10):2006–2024

    Article  CAS  Google Scholar 

  • Goossens N, Negro F (2014) Is genotype 3 of the hepatitis C virus the new villain? Hepatology 59(6):2403–2412

    Article  CAS  Google Scholar 

  • Gottwein JM, Bukh J (2008) Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems. Adv Virus Res 71:51–133

    Article  CAS  Google Scholar 

  • Gottwein JM et al (2011a) Differential efficacy of protease inhibitors against HCV genotypes 2a, 3a, 5a, and 6a NS3/4A protease recombinant viruses. Gastroenterology 141(3):1067–1079

    Article  CAS  Google Scholar 

  • Gottwein JM et al (2007) Robust hepatitis C genotype 3a cell culture releasing adapted intergenotypic 3a/2a (S52/JFH1) viruses. Gastroenterology 133(5):1614–1626

    Article  CAS  Google Scholar 

  • Gottwein JM et al (2009) Development and characterization of hepatitis C virus genotype 1–7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs. Hepatology 49(2):364–377

    Article  CAS  Google Scholar 

  • Gottwein JM et al (2013) Combination treatment with hepatitis C virus protease and NS5A inhibitors is effective against recombinant genotype 1a, 2a, and 3a viruses. Antimicrob Agents Chemother 57(3):1291–1303

    Article  CAS  Google Scholar 

  • Gottwein JM et al (2018) Efficacy of NS5A inhibitors against hepatitis C virus genotypes 1–7 and escape variants. Gastroenterology 154(5):1435–1448

    Article  CAS  Google Scholar 

  • Gottwein JM et al (2011b) Development and application of hepatitis C reporter viruses with genotype 1 to 7 core-nonstructural protein 2 (NS2) expressing fluorescent proteins or luciferase in modified JFH1 NS5A. J Virol 85(17):8913–8928

    Article  CAS  Google Scholar 

  • Guntipalli P et al (2021) Worldwide prevalence, genotype distribution and management of hepatitis C. Acta Gastroenterol Belg 84(4):637–656

    CAS  Google Scholar 

  • Han Q et al (2009) Compensatory mutations in NS3 and NS5A proteins enhance the virus production capability of hepatitis C reporter virus. Virus Res 145(1):63–73

    Article  CAS  Google Scholar 

  • Harrus D et al (2010) Further insights into the roles of GTP and the C terminus of the hepatitis C virus polymerase in the initiation of RNA synthesis. J Biol Chem 285(43):32906–32918

    Article  CAS  Google Scholar 

  • Hartlage AS, Cullen JM, Kapoor A (2016) The strange, expanding world of animal hepaciviruses. Ann Rev Virol 3(1):53–75

    Article  CAS  Google Scholar 

  • Hayes CN et al (2021) Road to elimination of HCV: clinical challenges in HCV management. Liver Int 42(9):1935–1944

    Google Scholar 

  • Hellen CU, Pestova TV (1999) Translation of hepatitis C virus RNA. J Viral Hepat 6(2):79–87

    Article  CAS  Google Scholar 

  • Hezode C (2017) Pan-genotypic treatment regimens for hepatitis C virus: advantages and disadvantages in high- and low-income regions. J Viral Hepat 24(2):92–101

    Article  CAS  Google Scholar 

  • Hofmann WP et al (2007) Mutagenic effect of ribavirin on hepatitis C nonstructural 5B quasispecies in vitro and during antiviral therapy. Gastroenterology 132(3):921–930

    Article  CAS  Google Scholar 

  • Hwang CK, Svarovskaia ES, Pathak VK (2001) Dynamic copy choice: steady state between murine leukemia virus polymerase and polymerase-dependent RNase H activity determines frequency of in vivo template switching. Proc Natl Acad Sci U S A 98(21):12209–12214

    Article  CAS  Google Scholar 

  • Inchauspe G et al (1991) Genomic structure of the human prototype strain H of hepatitis C virus: comparison with American and Japanese isolates. Proc Natl Acad Sci USA 88(22):10292–10296

    Article  CAS  Google Scholar 

  • Jackowiak P et al (2014) Phylogeny and molecular evolution of the hepatitis C virus. Infect Genet Evol 21:67–82

    Article  CAS  Google Scholar 

  • Jackson WE, Everson GT (2017) Sofosbuvir and velpatasvir for the treatment of hepatitis C. Expert Rev Gastroenterol Hepatol 11(6):501–505

    Article  CAS  Google Scholar 

  • Janssens FA, Koszul R, Zickler D (2012) The chiasmatype theory: a new interpretation of the maturation divisions. 1909. Genetics 191(2):319–346

    CAS  Google Scholar 

  • Jensen SB et al (2015) Substitutions at NS3 residue 155, 156, or 168 of hepatitis C virus genotypes 2 to 6 induce complex patterns of protease inhibitor resistance. Antimicrob Agents Chemother 59(12):7426–7436

    Article  CAS  Google Scholar 

  • Jensen TB et al (2008) Highly efficient JFH1-based cell-culture system for hepatitis C virus genotype 5a: failure of homologous neutralizing-antibody treatment to control infection. J Infect Dis 198(12):1756–1765

    Article  Google Scholar 

  • Kellam P, Larder BA (1995) Retroviral recombination can lead to linkage of reverse transcriptase mutations that confer increased zidovudine resistance. J Virol 69(2):669–674

    Article  CAS  Google Scholar 

  • Kim MJ, Kao C (2001) Factors regulating template switch in vitro by viral RNA-dependent RNA polymerases: implications for RNA-RNA recombination. Proc Natl Acad Sci USA 98(9):4972–4977

    Article  CAS  Google Scholar 

  • Lai MM (1992) RNA recombination in animal and plant viruses. Microbiol Rev 56(1):61–79

    Article  CAS  Google Scholar 

  • Le Guillou-Guillemette H et al (2007) Genetic diversity of the hepatitis C virus: impact and issues in the antiviral therapy. World J Gastroenterol 13(17):2416–2426

    Article  Google Scholar 

  • Lesburg CA, Radfar R, Weber PC (2000) Recent advances in the analysis of HCV NS5B RNA-dependent RNA polymerase. Curr Opin Investig Drugs 1(3):289–296

    CAS  Google Scholar 

  • Li HC, Yang CH, Lo SY (2021) Hepatitis C viral replication complex. Viruses 13(3):520

    Article  CAS  Google Scholar 

  • Li YP et al (2011) MicroRNA-122 antagonism against hepatitis C virus genotypes 1–6 and reduced efficacy by host RNA insertion or mutations in the HCV 5′ UTR. Proc Natl Acad Sci USA 108(12):4991–4996

    Article  CAS  Google Scholar 

  • Li YP et al (2012) Highly efficient full-length hepatitis C virus genotype 1 (strain TN) infectious culture system. Proc Natl Acad Sci USA 109(48):19757–19762

    Article  CAS  Google Scholar 

  • Li YP et al (2014) Differential sensitivity of 5′ UTR-NS5A recombinants of hepatitis C virus genotypes 1–6 to protease and NS5A inhibitors. Gastroenterology 146(3):812–821 e4

    Google Scholar 

  • Lindström I et al (2015) Prevalence of polymorphisms with significant resistance to NS5A inhibitors in treatment-naive patients with hepatitis C virus genotypes 1a and 3a in Sweden. Infect Dis (Lond) 47(8):555–562

    Article  Google Scholar 

  • Liu X, Hu P (2021) Efficacy and safety of glecaprevir/pibrentasvir in patients with chronic HCV infection. J Clin Transl Hepatol 9(1):125–132

    Google Scholar 

  • Lodrini S et al (2003) The NS3 protease gene of HCV is highly conserved within the putative catalytic site region. J Hepatol 38:113–114

    Article  Google Scholar 

  • Lohmann V (2013) Hepatitis C virus RNA replication. Curr Top Microbiol Immunol 369:167–198

    CAS  Google Scholar 

  • Lund AH et al (1999) The kissing-loop motif is a preferred site of 5′ leader recombination during replication of SL3-3 murine leukemia viruses in mice. J Virol 73(11):9614–9618

    Article  CAS  Google Scholar 

  • Lutchman G et al (2007) Mutation rate of the hepatitis C virus NS5B in patients undergoing treatment with ribavirin monotherapy. Gastroenterology 132(5):1757–1766

    Article  CAS  Google Scholar 

  • Mani N et al (2015) Nonstructural protein 5A (NS5A) and human replication protein A increase the processivity of hepatitis C virus NS5B polymerase activity in vitro. J Virol 89(1):165–180

    Article  Google Scholar 

  • McLauchlan J (2009) Hepatitis C virus: viral proteins on the move. Biochem Soc Trans 37(Pt 5):986–990

    Article  CAS  Google Scholar 

  • McPhee F et al (2019) Impact of preexisting hepatitis C virus genotype 6 NS3, NS5A, and NS5B polymorphisms on the in vitro potency of direct-acting antiviral agents. Antimicrob Agents Chemother 63(4)

    Google Scholar 

  • Mejer N et al (2018) Ribavirin-induced mutagenesis across the complete open reading frame of hepatitis C virus genotypes 1a and 3a. J Gen Virol 99(8):1066–1077

    Article  CAS  Google Scholar 

  • Mejer N et al (2020a) Ribavirin inhibition of cell-culture infectious hepatitis C genotype 1–3 viruses is strain-dependent. Virology 540:132–140

    Article  CAS  Google Scholar 

  • Mejer N et al (2020b) Mutations identified in the hepatitis C virus (HCV) polymerase of patients with chronic HCV treated with ribavirin cause resistance and affect viral replication fidelity. Antimicrob Agents Chemother 64(12):e01417-e1420

    Article  CAS  Google Scholar 

  • Menendez-Arias L (2009) Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses 1(3):1137–1165

    Article  CAS  Google Scholar 

  • Messina JP et al (2015) Global distribution and prevalence of hepatitis C virus genotypes. Hepatology 61(1):77–87

    Article  Google Scholar 

  • Meuleman P et al (2011) In vivo evaluation of the cross-genotype neutralizing activity of polyclonal antibodies against hepatitis C virus. Hepatology 53(3):755–762

    Article  CAS  Google Scholar 

  • Meyers G et al (1992) Rearrangement of viral sequences in cytopathogenic pestiviruses. Virology 191(1):368–386

    Article  CAS  Google Scholar 

  • Mortality GBD, Causes of Death, Collaborators (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1459–544

    Google Scholar 

  • Mosley RT et al (2012) Structure of hepatitis C virus polymerase in complex with primer-template RNA. J Virol 86(12):6503–6511

    Article  CAS  Google Scholar 

  • Moutouh L, Corbeil J, Richman DD (1996) Recombination leads to the rapid emergence of HIV-1 dually resistant mutants under selective drug pressure. Proc Natl Acad Sci USA 93(12):6106–6111

    Article  CAS  Google Scholar 

  • Neumann AU et al (1998) Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282(5386):103–107

    Article  CAS  Google Scholar 

  • Neumann-Haefelin C et al (2011) Human leukocyte antigen B27 selects for rare escape mutations that significantly impair hepatitis C virus replication and require compensatory mutations. Hepatology 54(4):1157–1166

    Article  CAS  Google Scholar 

  • Nguyen D et al (2020) Efficacy of NS5A inhibitors against unusual and potentially difficult-to-treat HCV subtypes commonly found in sub-Saharan Africa and South East Asia. J Hepatol 73(4):794–799

    Article  CAS  Google Scholar 

  • Nousbaum J et al (2000) Prospective characterization of full-length hepatitis C virus NS5A quasispecies during induction and combination antiviral therapy. J Virol 74(19):9028–9038

    Article  CAS  Google Scholar 

  • Oancea CN et al (2020) Global hepatitis C elimination: history, evolution, revolutionary changes and barriers to overcome. Rom J Morphol Embryol 61(3):643–653

    Article  Google Scholar 

  • Osburn WO et al (2014) Clearance of hepatitis C infection is associated with the early appearance of broad neutralizing antibody responses. Hepatology 59(6):2140–2151

    Article  CAS  Google Scholar 

  • Parlati L, Hollande C, Pol S (2021) Treatment of hepatitis C virus infection. Clin Res Hepatol Gastroenterol 45(4):101578

    Article  CAS  Google Scholar 

  • Pawlotsky JM (2014) New hepatitis C therapies: the toolbox, strategies, and challenges. Gastroenterology 146(5):1176–1192

    Article  CAS  Google Scholar 

  • Pawlotsky JM (2016) Hepatitis C virus resistance to direct-acting antiviral drugs in interferon-free regimens. Gastroenterology 151(1):70–86

    Article  CAS  Google Scholar 

  • Pawlotsky JM (2019) Retreatment of hepatitis C virus-infected patients with direct-acting antiviral failures. Semin Liver Dis 39(3):354–368

    Article  CAS  Google Scholar 

  • Pawlotsky JM (2020) Interferon-free hepatitis C virus therapy. Cold Spring Harb Perspect Med 10(11):a036855

    Article  CAS  Google Scholar 

  • Pawlotsky JM et al (2015) From non-A, non-B hepatitis to hepatitis C virus cure. J Hepatol 62(1 Suppl):S87-99

    Article  CAS  Google Scholar 

  • Pawlotsky JM et al (1998) Interferon resistance of hepatitis C virus genotype 1b: relationship to nonstructural 5A gene quasispecies mutations. J Virol 72(4):2795–2805

    Article  CAS  Google Scholar 

  • Peck KM, Lauring AS (2018) Complexities of viral mutation rates. J Virol 92(14):e01031-e1117

    Article  CAS  Google Scholar 

  • Perez-Losada M et al (2015) Recombination in viruses: mechanisms, methods of study, and evolutionary consequences. Infect Genet Evol 30:296–307

    Article  CAS  Google Scholar 

  • Pestka JM et al (2007) Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. Proc Natl Acad Sci USA 104(14):6025–6030

    Article  CAS  Google Scholar 

  • Pham LV et al (2018) HCV Genotype 6a escape from and resistance to velpatasvir, pibrentasvir, and sofosbuvir in robust infectious cell culture models. Gastroenterology 154(8):2194–208 e12

    Google Scholar 

  • Pham LV et al (2019) HCV genotype 1–6 NS3 residue 80 substitutions impact protease inhibitor activity and promote viral escape. J Hepatol 70(3):388–397

    Article  CAS  Google Scholar 

  • Pham LV et al (2022) HCV genome-wide analysis for development of efficient culture systems and unravelling of antiviral resistance in genotype 4. Gut 71(3):627–642

    Article  CAS  Google Scholar 

  • Pileri P et al (1998) Binding of hepatitis C virus to CD81. Science 282(5390):938–941

    Article  CAS  Google Scholar 

  • Ploss A et al (2009) Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457(7231):882–886

    Article  CAS  Google Scholar 

  • Plotkin SA, Plotkin SL (2011) The development of vaccines: how the past led to the future. Nat Rev Microbiol 9(12):889–893

    Article  CAS  Google Scholar 

  • Polaris Observatory, H. C. V. Collaborators (2017) Global prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. Lancet Gastroenterol Hepatol 2(3):161–176

    Google Scholar 

  • Prentoe J, Bukh J (2018) Hypervariable region 1 in envelope protein 2 of hepatitis c virus: a Linchpin in neutralizing antibody evasion and viral entry. Front Immunol 9:2146

    Article  Google Scholar 

  • Prentoe J et al (2019) Hypervariable region 1 and N-linked glycans of hepatitis C regulate virion neutralization by modulating envelope conformations. Proc Natl Acad Sci USA 116(20):10039–10047

    Article  CAS  Google Scholar 

  • Rambaut A et al (2004) The causes and consequences of HIV evolution. Nat Rev Genet 5(1):52–61

    Article  CAS  Google Scholar 

  • Ramirez S, Bukh J (2018) Current status and future development of infectious cell-culture models for the major genotypes of hepatitis C virus: essential tools in testing of antivirals and emerging vaccine strategies. Antiviral Res 158:264–287

    Article  CAS  Google Scholar 

  • Ramirez S et al (2014) Highly efficient infectious cell culture of three hepatitis C virus genotype 2b strains and sensitivity to lead protease, nonstructural protein 5A, and polymerase inhibitors. Hepatology 59(2):395–407

    Article  CAS  Google Scholar 

  • Ramirez S et al (2016) Robust HCV genotype 3a infectious cell culture system permits identification of escape variants with resistance to sofosbuvir. Gastroenterology 151(5):973–985 e2

    Google Scholar 

  • Ramirez S et al (2020) Cell culture studies of the efficacy and barrier to resistance of sofosbuvir-velpatasvir and glecaprevir-pibrentasvir against hepatitis C virus genotypes 2a, 2b, and 2c. Antimicrob Agents Chemother 64(3):e01888-e1919

    Article  CAS  Google Scholar 

  • Raney KD et al (2010) Hepatitis C virus non-structural protein 3 (HCV NS3): a multifunctional antiviral target. J Biol Chem 285(30):22725–22731

    Article  CAS  Google Scholar 

  • Reiter J et al (2011) Hepatitis C virus RNA recombination in cell culture. J Hepatol 55(4):777–783

    Article  CAS  Google Scholar 

  • Rhodes T, Wargo H, Hu WS (2003) High rates of human immunodeficiency virus type 1 recombination: near-random segregation of markers one kilobase apart in one round of viral replication. J Virol 77(20):11193–11200

    Article  CAS  Google Scholar 

  • Rong L et al (2010) Rapid emergence of protease inhibitor resistance in hepatitis C virus. Sci Transl Med 2(30):30ra32

    Google Scholar 

  • Rousset D et al (2003) Recombinant vaccine-derived poliovirus in Madagascar. Emerg Infect Dis 9(7):885–887

    Article  Google Scholar 

  • Rubbia-Brandt L et al (2000) Hepatocyte steatosis is a cytopathic effect of hepatitis C virus genotype 3. J Hepatol 33(1):106–115

    Article  CAS  Google Scholar 

  • Ruhl M et al (2012) Escape from a dominant HLA-B*15-restricted CD8+ T cell response against hepatitis C virus requires compensatory mutations outside the epitope. J Virol 86(2):991–1000

    Article  CAS  Google Scholar 

  • Ryan MD, Monaghan S, Flint M (1998) Virus-encoded proteinases of the Flaviviridae. J Gen Virol 79(5):947–959

    Article  CAS  Google Scholar 

  • Sagan SM, Chahal J, Sarnow P (2015) cis-Acting RNA elements in the hepatitis C virus RNA genome. Virus Res 206:90–98

    Article  CAS  Google Scholar 

  • Saito Y et al (2020) Ribavirin induces hepatitis C virus genome mutations in chronic hepatitis patients who failed to respond to prior daclatasvir plus asunaprevir therapy. J Med Virol 92(2):210–218

    Article  CAS  Google Scholar 

  • Salimi Alizei E et al (2021) Mutational escape from cellular immunity in viral hepatitis: variations on a theme. Curr Opin Virol 50:110–118

    Article  CAS  Google Scholar 

  • Sanjuan R, Domingo-Calap P (2016) Mechanisms of viral mutation. Cell Mol Life Sci 73(23):4433–4448

    Article  CAS  Google Scholar 

  • Sarrazin C (2021) Treatment failure with DAA therapy: importance of resistance. J Hepatol 74(6):1472–1482

    Article  CAS  Google Scholar 

  • Scheel TK et al (2008) Development of JFH1-based cell culture systems for hepatitis C virus genotype 4a and evidence for cross-genotype neutralization. Proc Natl Acad Sci USA 105(3):997–1002

    Article  CAS  Google Scholar 

  • Scheel TK et al (2011) Efficient culture adaptation of hepatitis C virus recombinants with genotype-specific core-NS2 by using previously identified mutations. J Virol 85(6):2891–2906

    Article  CAS  Google Scholar 

  • Scheel TK et al (2013) Productive homologous and non-homologous recombination of hepatitis C virus in cell culture. PLoS Pathog 9(3):e1003228

    Article  CAS  Google Scholar 

  • Scotto R et al (2019) Real-world efficacy and safety of pangenotypic direct-acting antivirals against hepatitis C virus infection. Rev Recent Clin Trials 14(3):173–182

    Article  CAS  Google Scholar 

  • Serre SB et al (2016) Hepatitis C virus genotype 1 to 6 protease inhibitor escape variants: in vitro selection, fitness, and resistance patterns in the context of the infectious viral life cycle. Antimicrob Agents Chemother 60(6):3563–3578

    Article  CAS  Google Scholar 

  • Shi ST, Lai MMC (2006) ‘HCV 5’ and 3′UTR: when translation meets replication. In: Tan SL (ed) Hepatitis C viruses: genomes and molecular biology. Horizon Bioscience, Norfolk, UK

    Google Scholar 

  • Shoukry NH (2018) Hepatitis C vaccines, antibodies, and T cells. Front Immunol 9:1480

    Article  Google Scholar 

  • Shoukry NH et al (2003) Memory CD8+ T cells are required for protection from persistent hepatitis C virus infection. J Exp Med 197(12):1645–1655

    Article  CAS  Google Scholar 

  • Shu B, Gong P (2016) Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation. Proc Natl Acad Sci U S A 113(28):E4005–E4014

    Article  CAS  Google Scholar 

  • Simmonds P (1996) Virology of hepatitis C virus. Clin Ther Suppl B 18:9–36

    Article  Google Scholar 

  • Simmonds P et al (2017) ICTV Virus taxonomy profile: Flaviviridae. J Gen Virol 98(1):2–3

    Article  CAS  Google Scholar 

  • Smith DB et al (2014) Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: updated criteria and genotype assignment web resource. Hepatology 59(1):318–327

    Article  Google Scholar 

  • Smith DB et al (2016) Proposed update to the taxonomy of the genera Hepacivirus and Pegivirus within the Flaviviridae family. J Gen Virol 97(11):2894–2907

    Article  CAS  Google Scholar 

  • Smith DA et al (2021) Viral genome wide association study identifies novel hepatitis C virus polymorphisms associated with sofosbuvir treatment failure. Nat Commun 12(1):6105

    Article  CAS  Google Scholar 

  • Sulejmani N, Jafri SM (2018) Grazoprevir/elbasvir for the treatment of adults with chronic hepatitis C: a short review on the clinical evidence and place in therapy. Hepat Med 10:33–42

    Google Scholar 

  • Thiagarajan P, Ryder SD (2015) The hepatitis C revolution part 1: antiviral treatment options. Curr Opin Infect Dis 28(6):563–571

    Article  CAS  Google Scholar 

  • Thomson MM, Najera R (2005) Molecular epidemiology of HIV-1 variants in the global AIDS pandemic: an update. AIDS Rev 7(4):210–224

    Google Scholar 

  • Vermehren J, Sarrazin C (2012) The role of resistance in HCV treatment. Best Pract Res Clin Gastroenterol 26(4):487–503

    Article  CAS  Google Scholar 

  • Vijay NNV et al (2008) Recombination increases human immunodeficiency virus fitness, but not necessarily diversity. J Gen Virol 89(Pt 6):1467–1477

    Article  CAS  Google Scholar 

  • von Hahn T et al (2007) Hepatitis C virus continuously escapes from neutralizing antibody and T-cell responses during chronic infection in vivo. Gastroenterology 132(2):667–678

    Article  Google Scholar 

  • Wang H, Tai AW (2016) Mechanisms of cellular membrane reorganization to support hepatitis C virus replication. Viruses 8(5):142

    Article  Google Scholar 

  • Ward MJ et al (2013) Estimating the rate of intersubtype recombination in early HIV-1 group M strains. J Virol 87(4):1967–1973

    Article  CAS  Google Scholar 

  • Webster DP, Klenerman P, Dusheiko GM (2015) Hepatitis C. Lancet 385(9973):1124–1135

    Article  Google Scholar 

  • Webster G et al (2000) HCV genotypes–role in pathogenesis of disease and response to therapy. Baillieres Best Pract Res Clin Gastroenterol 14(2):229–240

    Article  CAS  Google Scholar 

  • Welzel TM, Dultz G, Zeuzem S (2014) Interferon-free antiviral combination therapies without nucleosidic polymerase inhibitors. J Hepatol 61(1 Suppl):S98-s107

    Article  CAS  Google Scholar 

  • WHO (2017) Global Hepatitis Report (Global Hepatitis Report)

    Google Scholar 

  • Wing PAC et al (2019) Amino acid substitutions in genotype 3a hepatitis C virus polymerase protein affect responses to sofosbuvir. Gastroenterology 157(3):692–704 e9

    Google Scholar 

  • Witherell GW, Beineke P (2001) Statistical analysis of combined substitutions in nonstructural 5A region of hepatitis C virus and interferon response. J Med Virol 63(1):8–16

    Article  CAS  Google Scholar 

  • Worobey M, Holmes EC (1999) Evolutionary aspects of recombination in RNA viruses. J Gen Virol 80(Pt 10):2535–2543

    Article  CAS  Google Scholar 

  • Young KC et al (2003) Identification of a ribavirin-resistant NS5B mutation of hepatitis C virus during ribavirin monotherapy. Hepatology 38(4):869–878

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Bukh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galli, A., Bukh, J. (2023). Mechanisms and Consequences of Genetic Variation in Hepatitis C Virus (HCV). In: Domingo, E., Schuster, P., Elena, S.F., Perales, C. (eds) Viral Fitness and Evolution. Current Topics in Microbiology and Immunology, vol 439. Springer, Cham. https://doi.org/10.1007/978-3-031-15640-3_7

Download citation

Publish with us

Policies and ethics