Skip to main content

Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine: A Note from the Editors

  • Chapter
  • First Online:
Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine

Abstract

Nanosystem is structured at or below the micrometer range, made of assemblies of nanoscale components with individual dimensions ranging between 1 and 100 nm. “Nanorobotics and nanodiagnostics” is a new generation of biohybrid that translates fundamental biological principles into engineering design rules to create biorobots that perform like natural systems. These biorobotics and diagnostics can now perform various tasks at the nanoscale in a wide variety of fields, including but not limited to fields such as integrative biology and biomedicine. Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine offers a comprehensive overview of the emerging interdisciplinary field with a wide-ranging discussion that includes nanotherapeutics and nanorobotic manipulation in biology and medicine. It provides up-to-date knowledge of the promising fields of integrative biology and biomedicine for nano-assisted biorobotics and diagnostics to detect and treat diseases that will enable new scientific discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann D, Schmidt TL, Hannam JS, Purohit CS, Heckel A, Famulok M. A double-stranded DNA rotaxane. Nat Nanotechnol. 2010;5:436–42.

    Article  CAS  Google Scholar 

  • Amarasekara H, Oshaben KM, Jeans KB, Rezvan Sangsari P, Morgan NY, O’Farrell B, et al. Cyclopentane peptide nucleic acid: gold nanoparticle conjugates for the detection of nucleic acids in a microfluidic format. Biopolymers. 2022;113:e23481.

    Article  CAS  Google Scholar 

  • Barbosa AI, Gehlot P, Sidapra K, Edwards AD, Reis NM. Portable smartphone quantitation of prostate specific antigen (PSA) in a fluoropolymer microfluidic device. Biosens Bioelectron. 2015;70:5–14.

    Article  CAS  Google Scholar 

  • Basiri A, Heidari A, Nadi MF, Fallahy MTP, Nezamabadi SS, Sedighi M, et al. Microfluidic devices for detection of RNA viruses. Rev Med Virol. 2021;31:1–11.

    Article  CAS  Google Scholar 

  • Beauchamp MJ, Nielsen AV, Gong H, Nordin GP, Woolley AT. 3D printed microfluidic devices for microchip electrophoresis of preterm birth biomarkers. Anal Chem. 2019;91:7418–25.

    Article  CAS  Google Scholar 

  • Buriak JM, Liz-Marzán LM, Parak WJ, Chen X. Nano and plants. ACS Publications; 2022. p. 1681–4.

    Google Scholar 

  • Campuzano S, Orozco J, Kagan D, Guix M, Gao W, Sattayasamitsathit S, et al. Bacterial isolation by lectin-modified microengines. Nano Lett. 2012;12:396–401.

    Article  CAS  Google Scholar 

  • Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. Recent developments in paper-based microfluidic devices. Anal Chem. 2015;87:19–41.

    Article  CAS  Google Scholar 

  • Chen S, Wang Y, Nie T, Bao C, Wang C, Xu T, et al. An artificial molecular shuttle operates in lipid bilayers for ion transport. J Am Chem Soc. 2018;140:17992–8.

    Article  CAS  Google Scholar 

  • Chen Y, Sun B, Jiang X, Yuan Z, Chen S, Sun P, et al. Double-acceptor conjugated polymers for NIR-II fluorescence imaging and NIR-II photothermal therapy applications. J Mater Chem B. 2021;9:1002–8.

    Article  CAS  Google Scholar 

  • Drexler KE. Engines of creation. Anchor Books; 1986.

    Google Scholar 

  • Gachpazan M, Mohammadinejad A, Saeidinia A, Rahimi HR, Ghayour-Mobarhan M, Vakilian F, et al. A review of biosensors for the detection of B-type natriuretic peptide as an important cardiovascular biomarker. Anal Bioanal Chem. 2021;413:5949–67.

    Article  CAS  Google Scholar 

  • Gan T, Shang W, Handschuh-Wang S, Zhou X. Light-induced shape morphing of liquid metal nanodroplets enabled by polydopamine coating. Small. 2019;15:1804838.

    Article  Google Scholar 

  • Gil G, Casagrande D, Cortés LP, Verschae R. Why the low adoption of robotics in the farms? Challenges for the establishment of commercial agricultural robots. Smart Agric Technol. 2023;3:100069.

    Article  Google Scholar 

  • Ginoya T, Maddahi Y, Zareinia K. A historical review of medical robotic platforms. J Robot. 2021;2021:6640031.

    Google Scholar 

  • Guo Y, Chen W, Zhao J, Yang G-Z. Medical robotics: opportunities in China. Annu Rev Control Robot Auton Syst. 2022;5:361–83.

    Article  Google Scholar 

  • Han X, Zhang Y, Tian J, Wu T, Li Z, Xing F, et al. Polymer-based microfluidic devices: a comprehensive review on preparation and applications. Polym Eng Sci. 2022;62:3–24.

    Article  CAS  Google Scholar 

  • Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Polymeric rotaxanes. Chem Rev. 2009;109:5974–6023.

    Article  CAS  Google Scholar 

  • Hu Q, Luni C, Elvassore N. Microfluidics for secretome analysis under enhanced endogenous signaling. Biochem Biophys Res Commun. 2018;497:480–4.

    Article  CAS  Google Scholar 

  • Jana P, Shyam M, Singh S, Jayaprakash V, Dev A. Biodegradable polymers in drug delivery and oral vaccination. Eur Polym J. 2021;142:110155.

    Article  CAS  Google Scholar 

  • Jaymand M. Chemically modified natural polymer-based theranostic nanomedicines: are they the golden gate toward a de novo clinical approach against cancer? ACS Biomater Sci Eng. 2019;6:134–66.

    Article  Google Scholar 

  • Joachim C, Rapenne G. Molecule concept nanocars: chassis, wheels, and motors? ACS Nano. 2013;7:11–4.

    Article  CAS  Google Scholar 

  • Kala D, Gupta S, Kaushal A. Nanotechnology in healthcare. In: Synthesis and applications of nanoparticles. Springer; 2022. p. 405–16.

    Chapter  Google Scholar 

  • Kshitiz, Ellison DD, Suhail Y, Afzal J, Woo L, Kilic O, et al. Dynamic secretome of bone marrow-derived stromal cells reveals a cardioprotective biochemical cocktail. Proc Natl Acad Sci. 2019;116:14374–83.

    Article  CAS  Google Scholar 

  • Kuralay F, Sattayasamitsathit S, Gao W, Uygun A, Katzenberg A, Wang J. Self-propelled carbohydrate-sensitive microtransporters with built-in boronic acid recognition for isolating sugars and cells. J Am Chem Soc. 2012;134:15217–20.

    Article  CAS  Google Scholar 

  • Lastra LS, Sharma V, Farajpour N, Nguyen M, Freedman KJ. Nanodiagnostics: a review of the medical capabilities of nanopores. Nanomedicine. 2021;37:102425.

    Article  CAS  Google Scholar 

  • Lewandowski B, De Bo G, Ward JW, Papmeyer M, Kuschel S, Aldegunde MJ, et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science. 2013;339:189–93.

    Article  CAS  Google Scholar 

  • Li J, Pumera M. 3D printing of functional microrobots. Chem Soc Rev. 2021;50:2794–838.

    Article  CAS  Google Scholar 

  • Li T, Li J, Morozov KI, Wu Z, Xu T, Rozen I, et al. Highly efficient freestyle magnetic nanoswimmer. Nano Lett. 2017;17:5092–8.

    Article  CAS  Google Scholar 

  • Li B, Tan Q, Fan Z, Xiao K, Liao Y. Next-generation theranostics: functionalized nanomaterials enable efficient diagnosis and therapy of tuberculosis. Adv Ther. 2020a;3:1900189.

    Article  CAS  Google Scholar 

  • Li Z, Yu T, Paul R, Fan J, Yang Y, Wei Q. Agricultural nanodiagnostics for plant diseases: recent advances and challenges. Nanoscale Adv. 2020b;2:3083–94.

    Article  CAS  Google Scholar 

  • Li Z, Bai Y, You M, Hu J, Yao C, Cao L, et al. Fully integrated microfluidic devices for qualitative, quantitative and digital nucleic acids testing at point of care. Biosens Bioelectron. 2021;177:112952.

    Article  CAS  Google Scholar 

  • Liu M, Wang Y, Kuai Y, Cong J, Xu Y, Piao HG, et al. Magnetically powered shape-transformable liquid metal micromotors. Small. 2019;15:1905446.

    Article  CAS  Google Scholar 

  • Liu SC, Yoo PB, Garg N, Lee AP, Rasheed S. A microfluidic device for blood plasma separation and fluorescence detection of biomarkers using acoustic microstreaming. Sensors Actuators A Phys. 2021;317:112482.

    Article  CAS  Google Scholar 

  • Manjunath A, Kishore V. The promising future in medicine: nanorobots. Biomed Sci Eng. 2014;2:42–7.

    Google Scholar 

  • Marrazzo P, Pizzuti V, Zia S, Sargenti A, Gazzola D, Roda B, et al. Microfluidic tools for enhanced characterization of therapeutic stem cells and prediction of their potential antimicrobial secretome. Antibiotics. 2021;10:750.

    Article  CAS  Google Scholar 

  • Mavroidis C, Ferreira A. Nanorobotics: past, present, and future. In: Nanorobotics. Springer; 2013. p. 3–27.

    Chapter  Google Scholar 

  • Moffatt S. Nanodiagnostics: a revolution in biomedical nanotechnology. MOJ Proteom Bioinform. 2016;3:00080.

    Article  Google Scholar 

  • Moniz AB, Krings B-J. “Manufacturing life” in real work processes? New manufacturing environments with micro-and nanorobotics. NanoEthics. 2022;16:115–31.

    Article  Google Scholar 

  • Park S-m, Aalipour A, Vermesh O, Yu JH, Gambhir SS. Towards clinically translatable in vivo nanodiagnostics. Nat Rev Mater. 2017;2:1–20.

    Article  CAS  Google Scholar 

  • Sabir F, Barani M, Mukhtar M, Rahdar A, Cucchiarini M, Zafar MN, et al. Nanodiagnosis and nanotreatment of cardiovascular diseases: an overview. Chemosensors. 2021;9:67.

    Article  CAS  Google Scholar 

  • Salamanca-Buentello F, Daar AS. Nanotechnology, equity and global health. Nat Nanotechnol. 2021;16:358–61.

    Article  CAS  Google Scholar 

  • Shakeri A, Khan S, Didar TF. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices. Lab Chip. 2021;21:3053–75.

    Article  CAS  Google Scholar 

  • Silva MLS. Microfluidic devices for glycobiomarker detection in cancer. Clin Chim Acta. 2021;521:229–43.

    Article  CAS  Google Scholar 

  • Singh N, Son S, An J, Kim I, Choi M, Kong N, et al. Nanoscale porous organic polymers for drug delivery and advanced cancer theranostics. Chem Soc Rev. 2021;50:12883–96.

    Article  CAS  Google Scholar 

  • Sitkov N, Zimina T, Kolobov A, Karasev V, Romanov A, Luchinin V, et al. Toward development of a label-free detection technique for microfluidic fluorometric peptide-based biosensor systems. Micromachines. 2021;12:691.

    Article  Google Scholar 

  • Stoddart JF. Mechanically interlocked molecules (MIMs) – molecular shuttles, switches, and machines (Nobel Lecture). Angew Chem Int Ed. 2017;56:11094–125.

    Article  CAS  Google Scholar 

  • Suhail M, Khan A, Rahim MA, Naeem A, Fahad M, Badshah SF, et al. Micro and nanorobot-based drug delivery: an overview. J Drug Target. 2022;30:349–58.

    Article  CAS  Google Scholar 

  • Tao X, Liao S, Wang Y. Polymer-assisted fully recyclable flexible sensors. EcoMat. 2021;3:e12083.

    Article  CAS  Google Scholar 

  • Verma N, Walia S, Pandya A. Micro/nanofluidic devices for DNA/RNA detection and separation. In: Micro/nanofluidics and lab-on-chip based emerging technologies for biomedical and translational research applications-Part A; 2022. p. 85.

    Google Scholar 

  • Wang J. Will future microbots be task-specific customized machines or multi-purpose “all in one” vehicles? Nat Commun. 2021;12:1–3.

    Article  Google Scholar 

  • Wang B, Kostarelos K, Nelson BJ, Zhang L. Trends in micro−/nanorobotics: materials development, actuation, localization, and system integration for biomedical applications. Adv Mater. 2021a;33:2002047.

    Article  CAS  Google Scholar 

  • Wang S, Zhang L, Zhao J, He M, Huang Y, Zhao S. A tumor microenvironment–induced absorption red-shifted polymer nanoparticle for simultaneously activated photoacoustic imaging and photothermal therapy. Sci Adv. 2021b;7:eabe3588.

    Article  CAS  Google Scholar 

  • Woodman C, Vundu G, George A, Wilson CM. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. In: Seminars in cancer biology. Elsevier; 2021. p. 349–64.

    Google Scholar 

  • Xu X, Kim K, Fan D. Tunable release of multiplex biochemicals by plasmonically active rotary nanomotors. Angew Chem. 2015;127:2555–9.

    Article  Google Scholar 

  • Xu S, Fan Z, Yang S, Zhao Y, Pan L. Flexible, self-powered and multi-functional strain sensors comprising a hybrid of carbon nanocoils and conducting polymers. Chem Eng J. 2021;404:126064.

    Article  CAS  Google Scholar 

  • Yu Z, Centola M, Valero J, Matthies M, Sulc P, Famulok M. A self-regulating DNA rotaxane linear actuator driven by chemical energy. J Am Chem Soc. 2021;143:13292–8.

    Article  CAS  Google Scholar 

  • Zhang W, Wang W, Yu DX, Xiao Z, He Z. Application of nanodiagnostics and nanotherapy to CNS diseases. Nanomedicine. 2018;13:2341–71.

    Article  CAS  Google Scholar 

  • Zhen X, Pu K, Jiang X. Photoacoustic imaging and photothermal therapy of semiconducting polymer nanoparticles: signal amplification and second near-infrared construction. Small. 2021;17:2004723.

    Article  CAS  Google Scholar 

  • Zhong X, Dai X, Wang Y, Wang H, Qian H, Wang X. Copper-based nanomaterials for cancer theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(4):e1797.

    Article  CAS  Google Scholar 

  • Zhou H, Wang Z, Zhao W, Tong X, Jin X, Zhang X, et al. Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers. Chem Eng J. 2021a;403:126307.

    Article  CAS  Google Scholar 

  • Zhou W, Dou M, Timilsina SS, Xu F, Li X. Recent innovations in cost-effective polymer and paper hybrid microfluidic devices. Lab Chip. 2021b;21:2658–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Basic Science Research Program” through the “National Research Foundation of Korea” funded by the Ministry of Education (NRF-2018R1A16A1A03025582, NRF- 2019R1D1A3A03103828, and NRF- 2022R1I1A3063302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Taek Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lim, KT., Abd-Elsalam, K.A. (2023). Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine: A Note from the Editors. In: Lim, KT., Abd-Elsalam, K.A. (eds) Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine. Springer, Cham. https://doi.org/10.1007/978-3-031-16084-4_1

Download citation

Publish with us

Policies and ethics