Skip to main content

Synthetic Nanoparticle-Based Remediation of Soils Contaminated with Polycyclic Aromatic Hydrocarbons

  • Reference work entry
  • First Online:
Handbook of Green and Sustainable Nanotechnology
  • 34 Accesses

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are recognized as potent mutagens or carcinogens and are listed as priority pollutants by the European Commission (EC) and United States Environmental Protection Agency (USEPA). PAHs enter in soil accidentally or through the intended combustion of various kinds of fuels. Invariably after their release a large amount of the PAHs persist in the roadside and agricultural soils. They reach the soil mainly as atmospheric fallout after their release into the environment. The vehicular exhausts, domestic burning, and cigarette smoke also contribute toward their entry into the open environment. Waste generated from the petroleum and coke manufacturing industries further adds to the pollution load onto the environment. The presence and the persistence of PAHs in the soil affect the innocent biota and cause unprecedented damage to the ecology of the area. The deleterious effects to a large extent will depend upon the decay rate and the toxicity of the PAHs and their metabolites. The application of nanoparticles to remediate soils contaminated with PAHs has been widely studied in the last decade. The present study will provide a comprehensive overview of various kinds of nanoparticles such as polymer-based and carbon-based material, metal oxides, and nanoscale zero-valent iron utilized for the degradation of PAHs in soils. In order to keep a proper track of the environmental impact of the release of these compounds, the present study on their decay profiles in the soil ecosystem under varying environmental conditions is highly significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Shafy HI, Mansour MS (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123

    Article  Google Scholar 

  • Abhilash PC, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30(8):416–420

    Article  CAS  Google Scholar 

  • Abhilash PC, Dubey RK, Tripathi V, Srivastava P, Verma JP, Singh HB (2013) Remediation and management of POPs-contaminated soils in a warming climate: challenges and perspectives. Environ Sci Pollut Res 20(8):5879–5885

    Article  CAS  Google Scholar 

  • Agarwal T (2009) Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi, India. J Hazard Mater 17:894–900

    Article  Google Scholar 

  • Ahmed FA (2003) Analysis of polychlorinated biphenyls in food products. Trends Anal Chem 22(3):170–185

    Article  CAS  Google Scholar 

  • Alhendal A, Almoaeen RA, Rashad M, Husain A, Mouffouk F, Ahmad Z (2022) Aramid-wrapped CNT hybrid sol–gel sorbent for polycyclic aromatic hydrocarbons. RSC Adv 12:18077–18083

    Article  CAS  Google Scholar 

  • Banwart S (2011) Save our soils. Nature 474(7350):151

    Article  CAS  Google Scholar 

  • Barzegar G, Jorfi S, Soltani RDC, Ahmadi M, Saeedi R, Abtahi M, Ramavandi B, Baboli Z (2017) Enhanced sono-Fenton-like oxidation of PAH-contaminated soil using nano-sized magnetite as catalyst: optimization with response surface methodology. Soil Sediment Contam 26:538–557

    Article  CAS  Google Scholar 

  • Bhattacharya P, Sarkar S, Ghosh S, Majumdar S, Mukhopadhyay A, Bandyopadhyay S (2013) Potential of ceramic microfiltration and ultrafiltration membranes for the treatment of gray water for an effective reuse. Desalin Water Treat 51:4323–4332

    Article  CAS  Google Scholar 

  • Chang MC, Kang HY (2009) Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles. J Environ Sci Heal Part A Toxic/Hazardous Subst Environ Eng 44:576–582

    CAS  Google Scholar 

  • Chang MC, Shu HY, Hsieh WP, Wang MC (2007) Remediation of soil contaminated with pyrene using ground nanoscale zero-valent iron. J Air Waste Manag Assoc 57:221–227

    Article  Google Scholar 

  • Cheng SQ, Xia YY, He JL, Liu XQ, Chen XM, Ding YB, Wang YX, Peng B, Tu BJ (2013) Neurotoxic effect of subacute benzo(a)pyrene exposure on gene and protein expression in Sprague-Dawley rats. Environ Toxicol Pharmacol 36:648–658

    Article  CAS  Google Scholar 

  • Chien SWC, Chang CH, Chen SH, Wang MC, Madhava Rao M, Satya Veni S (2011) Effect of sunlight irradiation on photocatalytic pyrene degradation in contaminated soils by micro-nano size TiO2. Sci Total Environ 409:4101–4108

    Article  Google Scholar 

  • Christensen ER, Bzdusek PA (2005) PAHs in sediments of the Black River and the Ashtabula River, Ohio: source apportionment by factor analysis. Water Res 39:511–524

    Article  CAS  Google Scholar 

  • Chung SY, Yettella RR, Kim MC, Kwon K, Kim MC, Min DB (2011) Effects of grilling and roasting on the levels of polycyclic aromatic hydrocarbons in beef and pork. Food Chem 129:1420–1426

    Article  CAS  Google Scholar 

  • Çok I, Mazmanci B, Mazmanci MA, Turgut C, Henkelmann B, Schramm KW (2012) Analysis of human milk to assess exposure to PAHs, PCBs and organochlorine pesticides in the vicinity Mediterranean city Mersin. Turkey Environ Int 40:63–69

    Article  Google Scholar 

  • Dai Y, Yin L, Niu J (2011) Laccase-carrying electrospun fibrous membranes for adsorption and degradation of PAHs in shoal soils. Environ Sci Technol 45(24):10611–10618

    Article  CAS  Google Scholar 

  • Dong D, Li P, Li X, Xu C, Gong D, Zhang Y, Zhao Q, Li P (2010a) Photocatalytic degradation of phenanthrene and pyrene on soil surfaces in the presence of nanometer rutile TiO2 under UV- irradiation. Chem Eng J 158:378–383

    Article  CAS  Google Scholar 

  • Dong D, Li P, Li X, Zhao Q, Zhang Y, Jia C, Li P (2010b) Investigation on the photocatalytic degradation of pyrene on soil surfaces using nanometer anatase TiO2 under UV irradiation. J Hazard Mater 174:859–863

    Article  CAS  Google Scholar 

  • Eker G, Hatipoglu M (2019) Effect of UV wavelength, temperature and photocatalyst on the removal of PAHs from industrial soil with photodegradation applications. Environ Technol 40(28):3793–3803

    Article  CAS  Google Scholar 

  • Fierens T, Servaes K, Holderbeke MV, Geerts L, Henauw SD, Sioen I, Vanermen G (2012) Analysis of phthalates in food products and packaging materials sold on the Belgian market. Food Chem Toxicol 50:2575–2583

    Article  CAS  Google Scholar 

  • Fontcuberta M, Arques JF, Villalbi JR, Martinez M, Centrich F, Serrahima E, Pineda L, Duran J, Casas C (2008) Chlorinated organic pesticides in marketed food: Barcelona, 2001–06. Sci Total Environ 339:52–57

    Article  Google Scholar 

  • Gan X, Teng Y, Ren W, Ma J, Christie P, Luo Y (2017) Optimization of ex-situ washing removal of polycyclic aromatic hydrocarbons from a contaminated soil using nano-sulfonated graphene. Pedosphere 27:527–536

    Article  CAS  Google Scholar 

  • Gil-Díaz M, Ortiz LT, Costa G, Alonso J, Rodríguez-Membibre ML, Sánchez-Fortún S (2014) Immobilization and leaching of Pb and Zn in an acidic soil treated with zerovalent iron nanoparticles (nZVI): physicochemical and toxicological analysis of leachates. Water Air Soil Pollut 225(6):1990

    Article  Google Scholar 

  • Gonzalez JJ, Vinas L, Franco MA, Fumega J, Soriano JA, Grueiro G, Muniategui S, Lopez-Mahia P, Prada D, Bayona JM, Alzaga R, Albaiges J (2006) Spatial and temporal distribution of dissolved/dispersed aromatic hydrocarbons in seawater in the area affected by the Prestige oil spill. Mar Poll Bull 53:250–259

    Article  CAS  Google Scholar 

  • González D, Ruiz LM, Garralón G, Plaza F, Arévalo J, Parada J, Pérez J, Moreno M, Gómez MA (2012) Wastewater polycyclic aromatic hydrocarbons removal by membrane bioreactor. Desalin Water Treat 42:94–99

    Article  Google Scholar 

  • Gupta H (2016) Photocatalytic degradation of phenanthrene in the presence of akaganeite nano-rods and the identification of degradation products. RSC Adv 6:112721–112727

    Article  CAS  Google Scholar 

  • Gupta H, Gupta B (2015a) Photocatalytic degradation of polycyclic aromatic hydrocarbon benzo[a]pyrene by iron oxides and identification of degradation products. Chemosphere 138:924–931

    Article  CAS  Google Scholar 

  • Gupta B, Gupta H (2015b) Iron oxide mediated degradation of mutagen pyrene and determination of degradation products. Int J Environ Sci Dev 6(12):908–912

    Article  CAS  Google Scholar 

  • Gupta K, Bhattacharya S, Chattopadhyay D, Mukhopadhyay A, Biswas H, Dutta J, Ray NR, Ghosh UC (2011) Ceria associated manganese oxide nanoparticles: synthesis, characterization and arsenic (V) sorption behavior. Chem Eng J 172:219–229

    Article  CAS  Google Scholar 

  • Gupta H, Kumar R, Park HS, Jeon BH (2017) Photocatalytic efficiency of iron oxide nanoparticles for the degradation of priority pollutant anthracene. Geosystem Eng 20(1):21–27

    Article  CAS  Google Scholar 

  • Hodson ME (2010) The need for sustainable soil remediation. Elements 6(6):363–368

    Article  CAS  Google Scholar 

  • Howard PH, Boethling RS, Jarvis WF, Meylan WM, Michalenko EM (1991) In: Printup HT (ed) Handbook of environmental degradation rates. Lewis Publishers, Chelsea

    Google Scholar 

  • Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    Article  CAS  Google Scholar 

  • Jorfi S, Rezaee A, Moheb-Ali GA, Jaafarzadeh NA (2013) Pyrene removal from contaminated soils by modified Fenton oxidation using iron nano particles. J Environ Heal Sci Eng 11:17

    Article  Google Scholar 

  • Kim JY, Shim SB, Shim JK (2003) Effect of amphiphilic polyurethane nanoparticles on sorption-desorption of phenanthrene in aquifer material. J Hazard Mater 98:145–160

    Article  CAS  Google Scholar 

  • Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7(5):5875–5895

    Article  Google Scholar 

  • Li Z, Sandau CD, Romanoff LC, Caudill SP, Sjodin A, Needham LL, Patterson DG (2008) Concentration and profile of 22 urinary polycyclic aromatic hydrocarbon metabolites in the US population. Environ Res 107:320–331

    Article  CAS  Google Scholar 

  • Li S, Anderson TA, Green MJ, Maul JD, Cañas-Carrella JE (2013a) Polyaromatic hydrocarbons (PAHs) sorption behavior unaffected by the presence of multi-walled carbon nanotubes (MWNTs) in a natural soil system. Environ Sci Process Impacts 15:1130–1136

    Article  CAS  Google Scholar 

  • Li S, Turaga U, Shrestha B, Anderson TA, Ramkumar SS, Green MJ, Das S, Cañas-Carrella JE (2013b) Mobility of polyaromatic hydrocarbons (PAHs) in soil in the presence of carbon nanotubes. Ecotoxicol Environ Saf 96:168–174

    Article  CAS  Google Scholar 

  • Li S, Tang J, Yu C, Liu Q, Wang L (2022) Efficient degradation of anthracene in soil by carbon-coated nZVI activated persulfate. J Hazard Mater 431:128581

    Article  CAS  Google Scholar 

  • Liu D, Xu Y, Chaemfa C, Tian C, Li J, Luo C, Zhang G (2014) Concentrations, seasonal variations, and outflow of atmospheric polycyclic aromatic hydrocarbons (PAHs) at Ningbo site, eastern China. Atmos Pollut Res 5:203–209

    Article  Google Scholar 

  • Malawaska M, Wilkomirski B (2001) An analysis of soil and plant (Taraxacum officinale) contamination with heavy metals and polycyclic aromatic hydrocarbons (PAHs) in the area of the railway junction IÅ‚awa Glowna, Poland. Water Air Soil Poll 127:339–349

    Article  Google Scholar 

  • Marquès M, Cervelló D, Mari M, Sierra J, Schuhmacher M, Domingo JL, Nadal M (2020) The role of iron oxide on the photodegradation of polycyclic aromatic hydrocarbons: characterization and toxicity. Polycycl Aromat Comp 40:524–534

    Article  Google Scholar 

  • Masih J, Masih A, Kulshrestha A, Singhvi R, Taneja A (2010) Characteristics of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the North central part of India. J Hazard Mater 177:190–198

    Article  CAS  Google Scholar 

  • Mazarji M, Minkina T, Sushkova S, Mandzhieva S, Bidhendi GN, Barakhov A, Bhatnagar A (2021) Effect of nanomaterials on remediation of polycyclic aromatic hydrocarbons-contaminated soils: a review. J Environ Mange 284:112023

    Article  CAS  Google Scholar 

  • Mehndiratta P, Jain A, Srivastava S, Gupta N (2013) Environmental pollution and nanotechnology. Environ Pollut 2:49–58

    Article  CAS  Google Scholar 

  • Nasreddine L, Parent-Massin D (2002) Food contamination by metals and pesticides in the European Union. Should we worry? Toxicol Lett 127:29–41

    Article  CAS  Google Scholar 

  • Nikolaou A, Kostopoulou M, Lofrano G, Meric S (2009) Determination of PAHs in marine sediments: analytical methods and environmental concerns. Global NEST J 11(4):391–405

    Google Scholar 

  • Olenycz M, Sokolowski A, Niewinska A, Wolowicz M, Namiesnik J, Hummel H, Jansen J (2015) Comparison of PCBs and PAHs levels in European coastal waters using mussels from the Mytilus edulis complex as biomonitors. Oceanologia 57:196–211

    Article  Google Scholar 

  • Oleszczuk P, KoÅ‚towski M (2017) Effect of co-application of nano-zero valent iron and biochar on the total and freely dissolved polycyclic aromatic hydrocarbons removal and toxicity of contaminated soils. Chemosphere 168:1467–1476

    Article  CAS  Google Scholar 

  • Pardo F, Santos A, Romero A (2016) Fate of iron and polycyclic aromatic hydrocarbons during the remediation of a contaminated soil using iron-activated persulfate: a column study. Sci Total Environ 566(567):480–488

    Article  Google Scholar 

  • Pathiratne A, Pathiratne KA, DeSeram PK (2010) Assessment of biological effects of pollutants in a hyper eutrophic tropical water body, Lake Beira, Sri Lanka using multiple biomarker responses of resident fish, Nile tilapia (Oreochromis niloticus). Ecotoxicology 19(6):1019–1026

    Article  CAS  Google Scholar 

  • Peikam EN, Jalali M (2018) Application of three nanoparticles (Al2O3, SiO2 and TiO2) for metalcontaminated soil remediation (measuring and modeling). Int J Environ Sci Technol:1–14

    Google Scholar 

  • Polder A, Savinova TN, Tkachev A, Loken KB, Odland JO, Skaare JU (2010) Levels and patterns of persistent organic pollutants (POPs) in selected food items from Northwest Russia (1998–2002) and implications for dietary exposure. Sci Total Environ 408:5352–5361

    Article  CAS  Google Scholar 

  • Qin YY, Leung CKM, Leung AOW, Zheng JS, Wong MH (2011) Persistent organic pollutants in food items collected in Hong Kong. Chemosphere 82:1329–1336

    Article  CAS  Google Scholar 

  • Qiu C, Cheng S, Xia Y, Peng B, Tang Q, Tu B (2011) Effects of subchronic benzo(a)pyrene exposure on neurotransmitter receptor gene expression in the rats hippocampus related with spatial learning and memory change. Toxicology 289:83–90

    Article  CAS  Google Scholar 

  • Rachna, Rani M, Shanker U (2019) Degradation of tricyclic polyaromatic hydrocarbons in water, soil and river sediment with a novel TiO2 based heterogeneous nanocomposite. J Environ Manag 248:109340

    Google Scholar 

  • Rani M, Rachna, Shanker U (2020) Metal oxide-chitosan based nanocomposites for efficient degradation of carcinogenic PAHs. J Environ Chem Eng 8(3):103810

    Google Scholar 

  • Ravindra K, Sokhi R, Grieken RV (2007) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ:1–27

    Google Scholar 

  • Riding MJ, Martin FL, Jones KC, Semple KT (2015) Carbon nanomaterials in clean and contaminated soils: environmental implications and applications. Soil 1:1–21

    Article  CAS  Google Scholar 

  • Schellenbergera MT, Grova N, Farinelle S, Willième S, Schroeder H, Muller CP (2013) Modulation of benzo[a]pyrene induced neurotoxicity in female mice actively immunized with a B[a]P–diphtheria toxoid conjugate. Toxicol Appl Pharm 271:175–183

    Article  Google Scholar 

  • Shanker U, Jassal V, Rani M (2017a) Degradation of toxic PAHs in water and soil using potassium zinc hexacyanoferrate nanocubes. J Environ Manag 204:337–348

    Article  CAS  Google Scholar 

  • Shanker U, Jassal V, Rani M (2017b) Green synthesis of iron hexacyanoferrate nanoparticles: potential candidate for the degradation of toxic PAHs. J Environ Chem Eng 5:4108–4120

    Article  CAS  Google Scholar 

  • Skrbic B, Cvejanov J, Durisic-Mladenovic N (2005) Polycyclic aromatic hydrocarbons in surface soils of Novi Sad and bank sediment of the Danube river. J Environ Sci Health, Part A: Environ Sci Eng 40:29–42

    Article  Google Scholar 

  • Soclo HH, Garrigues PH, Ewald M (2000) Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Mar Pollut Bull 40(5):387–396

    Article  CAS  Google Scholar 

  • Song Y, Fang G, Zhu C, Zhu F, Wu S, Chen N, Wu T, Wang Y (2018) Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils: an in situ pilot-scale study. Chem Eng J 355:65–75

    Article  Google Scholar 

  • Souza LRR, Pomarolli LC, da Veiga MAMS (2020) From classic methodologies to application of nanomaterials for soil remediation: an integrated view of methods for decontamination of toxic metal(oid)s. Environ Sci Pollut Res 27:10205–10227

    Article  Google Scholar 

  • Sun X, Ran Z, Wu Y, Zhong C, Zhu W, Hllah H, Yu J (2022) Optimization of PAHs oxidation from contaminated soil using modified nanoscale zero-valent iron combined with potassium permanganate. RSC Adv 12:7335–7346

    Article  CAS  Google Scholar 

  • Theerakarunwong CD, Phanichphant S (2016) Photo-remediation of phenanthrene contaminated soil under visible light irradiation. Chiang Mai J Sci 43:845–850

    Google Scholar 

  • Wang Y, Liu CS, Li FB, Liu CP, Liang JB (2009) Photodegradation of polycyclic aromatic hydrocarbon pyrene by iron oxide in solid phase. J Hazard Mater 162:716–723

    Article  CAS  Google Scholar 

  • Wang J, Luo Z, Song Y, Zheng X, Qu L, Qian J, Wu Y, Wu X, Wu Z (2019) Remediation of phenanthrene contaminated soil by g-C3N4/Fe3O4 composites and its phytotoxicity evaluation. Chemosphere 221:554–562

    Article  CAS  Google Scholar 

  • Wen S, Zhao J, Sheng G, Fu J, Peng P (2003) Photocatalytic reactions of pyrene at TiO2/water interfaces. Chemosphere 50:111–119

    Article  CAS  Google Scholar 

  • Wester PW, Muller JJA, Slob W, Mohn GR, Dortant PM, Kroese ED (2012) Carcinogenic activity of benzo[a]pyrene in a 2 year oral study in Wistar rats. Food Chem Toxicol 50:927–935

    Article  CAS  Google Scholar 

  • Wlodarczyk-Makula M (2005) The loads of PAHs in wastewater and sewage sludge of municipal treatment plant. Polycycl Aromat Compd 25:183–194

    Article  CAS  Google Scholar 

  • Włóka D, Placek A, Smol M, Rorat A, Hutchison D, Kacprzak M (2019) The efficiency and economic aspects of phytoremediation technology using Phalaris arundinacea L. and Brassica napus L. combined with compost and nano SiO2 fertilization for the removal of PAH’s from soil. J Environ Manag 234:311–319

    Article  Google Scholar 

  • Xia Y, Cheng S, He J, Liu X, Tang Y, Yuan H, He L, Lu T, Tu B, Wang Y (2011) Effects of subchronic exposure to benzo[a]pyrene (B[a]P) on learning and memory, and neurotransmitters in male Sprague–Dawley rat. Neurotoxicology 32:188–198

    Article  CAS  Google Scholar 

  • Xing-Hong L, Ling-ling MA, Xiu-fen L, Shan F, Hang-xin C, Xiao-bai X (2006) Polycyclic aromatic hydrocarbon in urban soil from Beijing, China. J Environ Sci 18(5):944–950

    Article  Google Scholar 

  • Xu Q, Huang Z, Ji S, Zhou J, Shi R, Shi W (2020) Cu2O nanoparticles grafting onto PLA fibers via electron beam irradiation: bifunctional composite fibers with enhanced photocatalytic of organic pollutants in aqueous and soil systems. J Radioanal Nucl Chem 323:253–261

    Article  CAS  Google Scholar 

  • Yang Y, Zhang XX, Korenaga T (2002) Distribution of polynuclear aromatic hydrocarbons (PAHs) in the soil of Tokushima, Japan. Water Air Soil Poll 138:51–60

    Article  CAS  Google Scholar 

  • Zhang L, Li P, Gong Z, Li X (2008) Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light. J Hazard Mater 158:478–484

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gupta, H., Dhiman, S. (2023). Synthetic Nanoparticle-Based Remediation of Soils Contaminated with Polycyclic Aromatic Hydrocarbons. In: Shanker, U., Hussain, C.M., Rani, M. (eds) Handbook of Green and Sustainable Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-031-16101-8_102

Download citation

Publish with us

Policies and ethics