Skip to main content

Competitive Location Strategies in the (r\(\mid \)p)-Centroid Problem on a Plane with Line Barriers

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research: Recent Trends (MOTOR 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1661))

  • 278 Accesses

Abstract

In 1982, Drezner considered the competitive facility location problem when the leader and follower each place a facility on a plane. He proposed polynomial-time algorithms for the follower and leader optimal facility location. In 2013, Davydov et al. considered a generalization of this problem when the leader has a set of \((p - 1)\) facilities and wants to open another facility in the best position with the optimal response of the follower.

We examine the influence of line barriers on the optimal leader and follower strategies. The paper considers the formulations in which the number of already open facilities is fixed, and the barriers divide the plane into polygons in such a way that two different paths from one polygon to another cannot exist. We propose a polynomial-time algorithm for the Drezner problem with barriers, as well as for the problem studied by Davydov et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eiselt, H.A., Marianov, V. (eds.): Foundations of Location Analysis. ISORMS, vol. 155. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-7572-0

    Book  MATH  Google Scholar 

  2. Ashtiani, M.: Competitive location: a state-of-art review. Int. J. Ind. Eng. Comput. 7(1), 1–18 (2016)

    Google Scholar 

  3. Mallozzi, L., D’Amato, E., Pardalos, P.M. (eds.): Spatial Interaction Models. SOIA, vol. 118. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52654-6

    Book  MATH  Google Scholar 

  4. Hotelling, H.: Stability in competition. Econ. J. 39, 41–57 (1929)

    Article  Google Scholar 

  5. Drezner, Z., Suzuki, A., Drezner, T.: Locating multiple facilities in a planar competitive environment. J. Oper. Res. Soc. Jpn. 50(3), 250–263 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Kress, D., Pesch, E.: Sequential competitive location on networks. Eur. J. Oper. Res. 217(3), 483–499 (2012)

    Article  MathSciNet  Google Scholar 

  7. Drezner, T.: A review of competitive facility location in the plane. Logist. Res. 7(1), 1–12 (2014). https://doi.org/10.1007/s12159-014-0114-z

    Article  MathSciNet  Google Scholar 

  8. Karakitsiou, A.: Modeling Discrete Competitive Facility Location. SO, Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21341-5

    Book  MATH  Google Scholar 

  9. Drezner, T., Drezner, Z., Kalczynski, P.: A cover-based competitive location model. J. of Heuristics 62(1), 100–113 (2010)

    MATH  Google Scholar 

  10. Biesinger, B., Hu, B., Raidl, G.: A hybrid genetic algorithm with solution archive for the discrete (r\(\mid \)p)-centroid problem. J. of Heuristics 21(3), 391–431 (2015)

    Article  Google Scholar 

  11. Klamroth, K.: Single-Facility Location Problems with Barriers. SSOR, Springer, New York (2002). https://doi.org/10.1007/b98843

    Book  MATH  Google Scholar 

  12. Katz, I.N., Cooper, L.: Facility location in the presence of forbidden regions, I: Formulation and the case of Euclidean distance with one forbidden circle. Eur. J. Oper. Res. 6(2), 166–173 (1981)

    Article  MathSciNet  Google Scholar 

  13. Butt, S.E., Cavalier, T.M.: An efficient algorithm for facility location in the presence of forbidden regions. Eur. J. Oper. Res. 90(1), 56–70 (1996)

    Article  Google Scholar 

  14. McGarvey, R.G., Cavalier, T.M.: A global optimal approach to facility location in the presence of forbidden regions. Comput. Ind. Eng. 45(1), 1–15 (2003)

    Article  Google Scholar 

  15. Klamroth, K.: Planar weber location problems with line barriers. Optim. 49(5–6), 517–27 (2001)

    Article  MathSciNet  Google Scholar 

  16. Klamroth, K., Wiecek, M.M.: A bi-objective median location problem with a line barrier. Oper. Res. 50(4), 670–679 (2002)

    Article  MathSciNet  Google Scholar 

  17. Sarkar, A., Batta, R., Nagi, R.: Placing a finite size facility with a center objective on a rectangular plane with barriers. Eur. J. Oper. Res. 179(3), 1160–1176 (2007)

    Article  Google Scholar 

  18. Kelachankuttu, H., Batta, R., Nagi, R.: Contour line construction for a new rectangular facility in an existing layout with rectangular departments. Eur. J. Oper. Res. 180(1), 149–162 (2007)

    Article  Google Scholar 

  19. Canbolat, M.S., Wesolowsky, G.O.: The rectiline distance weber problem in the presence of a probabilistic line barrier. Eur. J. Oper. Res. 202(1), 114–121 (2010)

    Article  Google Scholar 

  20. Shiripour, S., Mahdavi, I., Amiri-Aref, M., Mohammadnia-Otaghsara, M., Mahdavi-Amiri, N.: Multi-facility location problems in the presence of a probabilistic line barrier: a mixed integer quadratic programming model. Int. J. Prod. Res. 50(15), 3988–4008 (2012)

    Article  Google Scholar 

  21. Akyüz, M.H.: The capacitated multi-facility weber problem with polyhedral barriers: efficient heuristic methods. Comput. Ind. Eng. 113, 221–240 (2017)

    Google Scholar 

  22. Canbolat, M.S., Wesolowsky, G.O.: On the use of the varignon frame for single facility weber problems in the presence of convex barriers. Eur. J. Oper. Res. 217(2), 241–247 (2012)

    Article  MathSciNet  Google Scholar 

  23. Mahmud, T.M.T.: Simulated Annealing Approach in Solving the Minimax Problem with Fixed Line Barrier. PhD thesis, Universiti Teknologi Malaysia (2013)

    Google Scholar 

  24. Gharravi, H.G.: Rectiline interdiction problem by locating a line barrier. Master’s thesis, Middle East Technical University (2013)

    Google Scholar 

  25. Javadian, N., Tavakkoli-Moghaddam, R., Amiri-Aref, M., Shiripour, S.: Two metaheuristics for a multi-period minisum location-relocation problem with line restriction. Int. J. Adv. Manuf. Technol. 71(5–8), 1033–1048 (2014)

    Article  Google Scholar 

  26. Oguz, M., Bektas, T., Bennell, J.A.: Multicommodity flows and benders decomposition for restricted continuous location problems. Eur. J. Oper. Res. 266(3), 851–863 (218)

    Google Scholar 

  27. Amiri-Aref, M., Shiripour, S., Ruiz-Hernández, D.: Exact and approximate heuristics for the rectiline Weber location problem with a line barrier. Comput. Oper. Res. 132(1), 105293 (2021). https://doi.org/10.1016/j.cor.2021.105293

  28. Bischoff, M., Fleischmann, T., Klamroth, K.: The multi-facility location-allocation problem with polyhedral barriers. Comput. Oper. Res. 36(5), 1376–1392 (2009)

    Article  MathSciNet  Google Scholar 

  29. Bischoff, M., Klamroth, K.: An efficient solution method for weber problems with barriers based on genetic algorithms. Eur. J. Oper. Res. 177(1), 22–41 (2007)

    Article  MathSciNet  Google Scholar 

  30. Drezner, Z.: Competitive location strategies for two facilities. Reg. Sci. Urban Econ. 12, 485–493 (1982)

    Article  Google Scholar 

  31. Davydov, I.A., Kochetov, Y.A., Carrizosa, E.: A local search heuristic for the (r\(\mid \)p)-centroid problem in the plane. Comput. Oper. Res. 52, 334–340 (2014)

    Article  MathSciNet  Google Scholar 

  32. Berger, A., Grigoriev, A., Panin, A., Winokurow, A.: Location, pricing and the problem of Apollonius. Optim. Lett. 11, 1797–1805 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the grant of the Russian Science Foundation, RSF-ANR 21-41-09017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr Plyasunov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panin, A., Plyasunov, A. (2022). Competitive Location Strategies in the (r\(\mid \)p)-Centroid Problem on a Plane with Line Barriers. In: Kochetov, Y., Eremeev, A., Khamisov, O., Rettieva, A. (eds) Mathematical Optimization Theory and Operations Research: Recent Trends. MOTOR 2022. Communications in Computer and Information Science, vol 1661. Springer, Cham. https://doi.org/10.1007/978-3-031-16224-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16224-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16223-7

  • Online ISBN: 978-3-031-16224-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics