Skip to main content

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13685))

Included in the following conference series:

Abstract

Despite their impressive performance on image classification tasks, deep networks have a hard time generalizing to unforeseen corruptions of their data. To fix this vulnerability, prior works have built complex data augmentation strategies, combining multiple methods to enrich the training data. However, introducing intricate design choices or heuristics makes it hard to understand which elements of these methods are indeed crucial for improving robustness. In this work, we take a step back and follow a principled approach to achieve robustness to common corruptions. We propose PRIME, a general data augmentation scheme that relies on simple yet rich families of max-entropy image transformations. PRIME outperforms the prior art in terms of corruption robustness, while its simplicity and plug-and-play nature enable combination with other methods to further boost their robustness. We analyze PRIME to shed light on the importance of the mixing strategy on synthesizing corrupted images, and to reveal the robustness-accuracy trade-offs arising in the context of common corruptions. Finally, we show that the computational efficiency of our method allows it to be easily used in both on-line and off-line data augmentation schemes. Our code is available at https://github.com/amodas/PRIME-augmentations.

A. Modas and R. Rade—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In practice, we will work with discrete images on a regular grid.

  2. 2.

    In Appendix K, we also show that our method yields additional benefits when employed in concert with unsupervised domain adaptation [37].

  3. 3.

    We provide the per-corruption performance of every method in Appendix H.

  4. 4.

    A visualization of the augmented space using PCA can be found in Appendix G.

References

  1. Beale, P.: Statistical Mechanics. Elsevier (1996)

    Google Scholar 

  2. Benz, P., Zhang, C., Karjauv, A., Kweon, I.S.: Revisiting batch normalization for improving corruption robustness. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (2021)

    Google Scholar 

  3. Bhojanapalli, S., Chakrabarti, A., Glasner, D., Li, D., Unterthiner, T., Veit, A.: Understanding robustness of Transformers for image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  4. Binder, F., Aichinger, E., Ecker, J., Nöbauer, C., Mayr, P.: Algorithms for near-rings of non-linear transformations. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation. Association for Computing Machinery (2000)

    Google Scholar 

  5. Calian, D.A., Stimberg, F., Wiles, O., Rebuffi, S.A., Gyorgy, A., Mann, T., Gowal, S.: Defending against image corruptions through adversarial augmentations. arXiv preprint arXiv:2104.01086 (2021)

  6. Chen, G., Peng, P., Ma, L., Li, J., Du, L., Tian, Y.: Amplitude-phase recombination: Rethinking robustness of convolutional neural networks in frequency domain. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  7. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.E.: Big self-supervised models are strong semi-supervised learners. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  8. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Hoboken (2006)

    Google Scholar 

  9. Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti, E., Flammarion, N., Chiang, M., Mittal, P., Hein, M.: RobustBench: a standardized adversarial robustness benchmark. In: Thirty-Fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2021)

    Google Scholar 

  10. Cubuk, E.D., Zoph, B., Mané, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation strategies from data. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009)

    Google Scholar 

  12. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  13. Diffenderfer, J., Bartoldson, B.R., Chaganti, S., Zhang, J., Kailkhura, B.: A winning hand: Compressing deep networks can improve out-of-distribution robustness. In: Advances in Neural Information Processing Systems, December 2021

    Google Scholar 

  14. Dodge, S., Karam, L.: Understanding how image quality affects deep neural networks. In: 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX) (2016)

    Google Scholar 

  15. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  16. Fawzi, A., Fawzi, O., Frossard, P.: Analysis of classifiers’ robustness to adversarial perturbations. Mach. Learn. 107(3), 481–508 (2018)

    Article  MathSciNet  Google Scholar 

  17. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: International Conference on Learning Representations (2019)

    Google Scholar 

  18. Geirhos, R., Temme, C.R.M., Rauber, J., Schütt, H.H., Bethge, M., Wichmann, F.A.: Generalisation in humans and deep neural networks. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  20. Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai, R., Zhu, T., Parajuli, S., Guo, M., Song, D., Steinhardt, J., Gilmer, J.: The many faces of robustness: a critical analysis of out-of-distribution generalization. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  21. Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: International Conference on Learning Representations (2019)

    Google Scholar 

  22. Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.: AugMix: a simple method to improve robustness and uncertainty under data shift. In: International Conference on Learning Representations (2020)

    Google Scholar 

  23. Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., Song, D.: Natural adversarial examples. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  24. Kireev, K., Andriushchenko, M., Flammarion, N.: On the effectiveness of adversarial training against common corruptions. arXiv preprint arXiv:2103.02325 (2021)

  25. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  26. Lopes, R.G., Yin, D., Poole, B., Gilmer, J., Cubuk, E.D.: Improving robustness without sacrificing accuracy with patch gaussian augmentation. arXiv preprint arXiv:1906.02611 (2019)

  27. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: International Conference on Learning Representations, April 2018

    Google Scholar 

  28. Masiha, M.S., Gohari, A., Yassaee, M.H., Aref, M.R.: Learning under distribution mismatch and model misspecification. In: IEEE International Symposium on Information Theory (ISIT) (2021)

    Google Scholar 

  29. Mintun, E., Kirillov, A., Xie, S.: On interaction between augmentations and corruptions in natural corruption robustness. arXiv preprint arXiv:2102.11273 (2021)

  30. Moayeri, M., Feizi, S.: Sample efficient detection and classification of adversarial attacks via self-supervised embeddings. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  31. Morrison, K., Gilby, B., Lipchak, C., Mattioli, A., Kovashka, A.: Exploring corruption robustness: inductive biases in vision transformers and MLP-mixers. arXiv preprint arXiv:2106.13122 (2021)

  32. Petrini, L., Favero, A., Geiger, M., Wyart, M.: Relative stability toward diffeomorphisms indicates performance in deep nets. In: Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  33. Raghunathan, A., Xie, S.M., Yang, F., Duchi, J., Liang, P.: Understanding and mitigating the tradeoff between robustness and accuracy. In: Proceedings of the 37th International Conference on Machine Learning, July 2020

    Google Scholar 

  34. Recht, B., Roelofs, R., Schmidt, L., Shankar, V.: Do ImageNet classifiers generalize to ImageNet? In: Proceedings of the 36th International Conference on Machine Learning (2019)

    Google Scholar 

  35. Rusak, E., Schott, L., Zimmermann, R.S., Bitterwolf, J., Bringmann, O., Bethge, M., Brendel, W.: A simple way to make neural networks robust against diverse image corruptions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 53–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_4

    Chapter  Google Scholar 

  36. Saikia, T., Schmid, C., Brox, T.: Improving robustness against common corruptions with frequency biased models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  37. Schneider, S., Rusak, E., Eck, L., Bringmann, O., Brendel, W., Bethge, M.: Improving robustness against common corruptions by covariate shift adaptation. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  38. Sun, J., Mehra, A., Kailkhura, B., Chen, P.Y., Hendrycks, D., Hamm, J., Mao, Z.M.: Certified adversarial defenses meet out-of-distribution corruptions: benchmarking robustness and simple baselines. arXiv preprint arXiv:arXiv:2112.00659 (2021)

  39. Taori, R., Dave, A., Shankar, V., Carlini, N., Recht, B., Schmidt, L.: Measuring robustness to natural distribution shifts in image classification. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  40. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., Madry, A.: Robustness may be at odds with accuracy. In: International Conference on Learning Representations, May 2019

    Google Scholar 

  41. Wang, H., Xiao, C., Kossaifi, J., Yu, Z., Anandkumar, A., Wang, Z.: AugMax: adversarial composition of random augmentations for robust training. In: Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  42. Xu, A., Raginsky, M.: Information-theoretic analysis of generalization capability of learning algorithms. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  43. Yi, M., Hou, L., Sun, J., Shang, L., Jiang, X., Liu, Q., Ma, Z.: Improved OOD generalization via adversarial training and pretraining. In: Proceedings of the 86th International Conference on Machine Learning (2021)

    Google Scholar 

  44. Yun, S., Han, D., Chun, S., Oh, S.J., Yoo, Y., Choe, J.: CutMix: regularization strategy to train strong classifiers with localizable features. In: 2019 IEEE/CVF International Conference on Computer Vision (2019)

    Google Scholar 

  45. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. In: International Conference on Learning Representations (2018)

    Google Scholar 

  46. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

Download references

Acknowledgment

We thank Alessandro Favero for the fruitful discussions and feedback. This work has been partially supported by the CHIST-ERA program under Swiss NSF Grant 20CH21_180444, and partially by Google via a Postdoctoral Fellowship and a GCP Research Credit Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos Modas .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 7942 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Modas, A., Rade, R., Ortiz-Jiménez, G., Moosavi-Dezfooli, SM., Frossard, P. (2022). PRIME: A Few Primitives Can Boost Robustness to Common Corruptions. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13685. Springer, Cham. https://doi.org/10.1007/978-3-031-19806-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19806-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19805-2

  • Online ISBN: 978-3-031-19806-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics