Skip to main content

Language-Grounded Indoor 3D Semantic Segmentation in the Wild

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13693))

Included in the following conference series:

Abstract

Recent advances in 3D semantic segmentation with deep neural networks have shown remarkable success, with rapid performance increase on available datasets. However, current 3D semantic segmentation benchmarks contain only a small number of categories – less than 30 for ScanNet and SemanticKITTI, for instance, which are not enough to reflect the diversity of real environments (e.g., semantic image understanding covers hundreds to thousands of classes). Thus, we propose to study a larger vocabulary for 3D semantic segmentation with a new extended benchmark on ScanNet data with 200 class categories, an order of magnitude more than previously studied. This large number of class categories also induces a large natural class imbalance, both of which are challenging for existing 3D semantic segmentation methods. To learn more robust 3D features in this context, we propose a language-driven pre-training method to encourage learned 3D features that might have limited training examples to lie close to their pre-trained text embeddings. Extensive experiments show that our approach consistently outperforms state-of-the-art 3D pre-training for 3D semantic segmentation on our proposed benchmark (+9% relative mIoU), including limited-data scenarios with +25% relative mIoU using only 5% annotations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://kaldir.vc.in.tum.de/scannet_benchmark/.

References

  1. Behley, J., et al.: SemanticKITTI: a dataset for Semantic Scene Understanding of LiDAR Sequences. In: Proceedings of the IEEE/CVF International Conf. on Computer Vision (ICCV) (2019)

    Google Scholar 

  2. Biasutti, P., Lepetit, V., Aujol, J.F., Brédif, M., Bugeau, A.: Lu-net: an efficient network for 3d lidar point cloud semantic segmentation based on end-to-end-learned 3d features and u-net. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  3. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)

    Article  Google Scholar 

  4. Chang, A., et al.: Matterport3d: learning from RGB-D data in indoor environments. arXiv preprint arXiv:1709.06158 (2017)

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  6. Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  7. Chen, Y., Nießner, M., Dai, A.: 4dcontrast: contrastive learning with dynamic correspondences for 3d scene understanding. arXiv preprint arXiv:2112.02990 (2021)

  8. Cheraghian, A., Rahman, S., Chowdhury, T.F., Campbell, D., Petersson, L.: Zero-shot learning on 3d point cloud objects and beyond. CoRR abs/2104.04980 (2021). arxiv.org/abs/2104.04980

  9. Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3075–3084 (2019)

    Google Scholar 

  10. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of Computer Vision and Pattern Recognition (CVPR), IEEE (2017)

    Google Scholar 

  11. Dai, A., Nießner, M.: 3DMV: joint 3d-multi-view prediction for 3d semantic scene segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 458–474. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_28

    Chapter  Google Scholar 

  12. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  13. Graham, B., Engelcke, M., van der Maaten, L.: 3d semantic segmentation with submanifold sparse convolutional networks. In: CVPR (2018)

    Google Scholar 

  14. Gu, X., Lin, T.Y., Kuo, W., Cui, Y.: Zero-shot detection via vision and language knowledge distillation. arXiv e-prints, arXiv-2104 (2021)

    Google Scholar 

  15. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  16. Han, L., Zheng, T., Xu, L., Fang, L.: OccuSeg: occupancy-aware 3d instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2940–2949 (2020)

    Google Scholar 

  17. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision And Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  18. Hou, J., Graham, B., Nießner, M., Xie, S.: Exploring data-efficient 3d scene understanding with contrastive scene contexts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15587–15597 (2021)

    Google Scholar 

  19. Hsieh, T.I., Robb, E., Chen, H.T., Huang, J.B.: Droploss for long-tail instance segmentation. In: AAAI, vol. 3, p. 15 (2021)

    Google Scholar 

  20. Huang, S., Xie, Y., Zhu, S.C., Zhu, Y.: Spatio-temporal self-supervised representation learning for 3d point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6535–6545 (2021)

    Google Scholar 

  21. Jiang, L., Zhao, H., Shi, S., Liu, S., Fu, C.W., Jia, J.: PointGroup: dual-set point grouping for 3d instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  22. Kang, B., et al.: Decoupling representation and classifier for long-tailed recognition. In: Eighth International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  23. Khosla, P., et al.: Supervised contrastive learning. Adv. Neural Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  24. Li, B., Weinberger, K.Q., Belongie, S., Koltun, V., Ranftl, R.: Language-driven semantic segmentation. arXiv preprint arXiv:2201.03546 (2022)

  25. Li, Y., et al.: Overcoming classifier imbalance for long-tail object detection with balanced group softmax. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10991–11000 (2020)

    Google Scholar 

  26. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  27. Lin, T.-Y.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  28. Liu, Z., Qi, X., Fu, C.W.: One thing one click: a self-training approach for weakly supervised 3d semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1726–1736 (2021)

    Google Scholar 

  29. Manhardt, F., Kehl, W., Gaidon, A.: Roi-10d: monocular lifting of 2d detection to 6d pose and metric shape. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2069–2078 (2019)

    Google Scholar 

  30. Michel, O., Bar-On, R., Liu, R., Benaim, S., Hanocka, R.: Text2mesh: text-driven neural stylization for meshes. arXiv preprint arXiv:2112.03221 (2021)

  31. Michele, B., Boulch, A., Puy, G., Bucher, M., Marlet, R.: Generative zero-shot learning for semantic segmentation of 3d point cloud. CoRR abs/2108.06230 (2021). arxiv.org/abs/2108.06230

  32. More, A.: Survey of resampling techniques for improving classification performance in unbalanced datasets. arXiv preprint arXiv:1608.06048 (2016)

  33. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  34. Nekrasov, A., Schult, J., Litany, O., Leibe, B., Engelmann, F.: Mix3D: out-of-context data augmentation for 3D scenes. In: International Conference on 3D Vision (3DV) (2021)

    Google Scholar 

  35. Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv e-prints, arXiv-1807 (2018)

    Google Scholar 

  36. Peng, M., et al.: Trainable undersampling for class-imbalance learning. In: AAAI (2019)

    Google Scholar 

  37. Perez-Ortiz, M., Tiňo, P., Mantiuk, R., Hervás-Martínez, C.: Exploiting synthetically generated data with semi-supervised learning for small and imbalanced datasets. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4715–4722 (2019)

    Google Scholar 

  38. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  39. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 30, 1–10 (2017)

    Google Scholar 

  40. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  41. Rao, Y., Liu, B., Wei, Y., Lu, J., Hsieh, C.J., Zhou, J.: Randomrooms: unsupervised pre-training from synthetic shapes and randomized layouts for 3d object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3283–3292 (2021)

    Google Scholar 

  42. Riegler, G., Osman Ulusoy, A., Geiger, A.: OctNet: Learning deep 3d representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3577–3586 (2017)

    Google Scholar 

  43. Sanghi, A., Chu, H., Lambourne, J.G., Wang, Y., Cheng, C., Fumero, M.: Clip-forge: towards zero-shot text-to-shape generation. CoRR abs/2110.02624 (2021). arxiv.org/abs/2110.02624

  44. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6411–6420 (2019)

    Google Scholar 

  45. Wang, C., Ma, C., Zhu, M., Yang, X.: PointAugmenting: cross-modal augmentation for 3d object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11794–11803 (2021)

    Google Scholar 

  46. Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O.: PointContrast: unsupervised pre-training for 3D point cloud understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 574–591. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_34

    Chapter  Google Scholar 

  47. Xu, J., Zhang, R., Dou, J., Zhu, Y., Sun, J., Pu, S.: RPVNet: a deep and efficient range-point-voxel fusion network for lidar point cloud segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16024–16033 (2021)

    Google Scholar 

  48. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Yu.: SpiderCNN: deep learning on point sets with parameterized convolutional filters. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 90–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_6

    Chapter  Google Scholar 

  49. Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18, 3337 (2018)

    Article  Google Scholar 

  50. Yan, Y., et al.: Oversampling for imbalanced data via optimal transport. In: AAAI (2019)

    Google Scholar 

  51. Zhang, R., et al.: PointClip: point cloud understanding by CLIP. CoRR abs/2112.02413 (2021). arxiv.org/abs/2112.02413

  52. Zhang, Z., Girdhar, R., Joulin, A., Misra, I.: Self-supervised pretraining of 3d features on any point-cloud. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10252–10263 (2021)

    Google Scholar 

Download references

Acknowledgements

This project is funded by the Bavarian State Ministry of Science and the Arts and coordinated by the Bavarian Research Institute for Digital Transformation (bidt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Rozenberszki .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mp4 15870 KB)

Supplementary material 1 (pdf 3522 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rozenberszki, D., Litany, O., Dai, A. (2022). Language-Grounded Indoor 3D Semantic Segmentation in the Wild. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13693. Springer, Cham. https://doi.org/10.1007/978-3-031-19827-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19827-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19826-7

  • Online ISBN: 978-3-031-19827-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics