Skip to main content

ReAct: Temporal Action Detection with Relational Queries

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13670))

Included in the following conference series:

Abstract

This work aims at advancing temporal action detection (TAD) using an encoder-decoder framework with action queries, similar to DETR, which has shown great success in object detection. However, the framework suffers from several problems if directly applied to TAD: the insufficient exploration of inter-query relation in the decoder, the inadequate classification training due to a limited number of training samples, and the unreliable classification scores at inference. To this end, we first propose a relational attention mechanism in the decoder, which guides the attention among queries based on their relations. Moreover, we propose two losses to facilitate and stabilize the training of action classification. Lastly, we propose to predict the localization quality of each action query at inference in order to distinguish high-quality queries. The proposed method, named ReAct, achieves the state-of-the-art performance on THUMOS14, with much lower computational costs than previous methods. Besides, extensive ablation studies are conducted to verify the effectiveness of each proposed component. The code is available at https://github.com/sssste/React.

D. Shi—This work is done during an internship at JD Explore Academy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: a video vision transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6836–6846 (2021)

    Google Scholar 

  2. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-nms-improving object detection with one line of code. In: Proceedings of the IEEE International Conference on Computer vision, pp. 5561–5569 (2017)

    Google Scholar 

  3. Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: Activitynet: A large-scale video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–970 (2015)

    Google Scholar 

  4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-End object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  5. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  6. Chao, Y.W., Vijayanarasimhan, S., Seybold, B., Ross, D.A., Deng, J., Sukthankar, R.: Rethinking the faster r-cnn architecture for temporal action localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1130–1139 (2018)

    Google Scholar 

  7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  8. Chen, X., Cao, Q., Zhong, Y., Zhang, J., Gao, S., Tao, D.: Dearkd: data-efficient early knowledge distillation for vision transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12052–12062 (2022)

    Google Scholar 

  9. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  10. Feng, C., Zhong, Y., Gao, Y., Scott, M.R., Huang, W.: Tood: task-aligned one-stage object detection. arXiv preprint. arXiv:2108.07755 (2021)

  11. Gao, J., Chen, K., Nevatia, R.: CTAP: complementary temporal action proposal generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 70–85. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_5

    Chapter  Google Scholar 

  12. Gao, J., Yang, Z., Chen, K., Sun, C., Nevatia, R.: Turn tap: temporal unit regression network for temporal action proposals. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3628–3636 (2017)

    Google Scholar 

  13. Gutmann, M., Hyvärinen, A.: Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp. 297–304. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  14. Jiang, Y.G., et al.: THUMOS challenge: action recognition with a large number of classes (2014)

    Google Scholar 

  15. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logistics Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, C., et al.: Fast learning of temporal action proposal via dense boundary generator. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11499–11506 (2020)

    Google Scholar 

  17. Lin, C., et al.: Learning salient boundary feature for anchor-free temporal action localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3320–3329 (2021)

    Google Scholar 

  18. Lin, T., Liu, X., Li, X., Ding, E., Wen, S.: Bmn: boundary-matching network for temporal action proposal generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3889–3898 (2019)

    Google Scholar 

  19. Lin, T., Zhao, X., Shou, Z.: Single shot temporal action detection. In: Proceedings of the 25th ACM international conference on Multimedia, pp. 988–996 (2017)

    Google Scholar 

  20. Lin, T., Zhao, X., Su, H., Wang, C., Yang, M.: BSN: boundary sensitive network for temporal action proposal generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 3–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_1

    Chapter  Google Scholar 

  21. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  22. Liu, X., Wang, Q., Hu, Y., Tang, X., Bai, S., Bai, X.: End-to-end temporal action detection with transformer. arXiv preprint. arXiv:2106.10271 (2021)

  23. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  24. Liu, Z., et al.: Video swin transformer. arXiv preprint. arXiv:2106.13230 (2021)

  25. Long, F., Yao, T., Qiu, Z., Tian, X., Luo, J., Mei, T.: Gaussian temporal awareness networks for action localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 344–353 (2019)

    Google Scholar 

  26. Van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv e-prints, pp. arXiv-1807 (2018)

    Google Scholar 

  27. Qing, Z., et al.: Temporal context aggregation network for temporal action proposal refinement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 485–494 (2021)

    Google Scholar 

  28. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019)

    Google Scholar 

  29. Sridhar, D., Quader, N., Muralidharan, S., Li, Y., Dai, P., Lu, J.: Class semantics-based attention for action detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13739–13748 (2021)

    Google Scholar 

  30. Tan, J., Tang, J., Wang, L., Wu, G.: Relaxed transformer decoders for direct action proposal generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13526–13535 (2021)

    Google Scholar 

  31. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: fully convolutional one-stage object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9627–9636 (2019)

    Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  33. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Van Gool, L.: Temporal segment networks for action recognition in videos. IEEE Trans. Pattern Anal. Mach. Intell. 41(11), 2740–2755 (2018)

    Article  Google Scholar 

  34. Xu, H., Das, A., Saenko, K.: R-c3d: region convolutional 3d network for temporal activity detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5783–5792 (2017)

    Google Scholar 

  35. Xu, M., Zhao, C., Rojas, D.S., Thabet, A., Ghanem, B.: G-tad: sub-graph localization for temporal action detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10156–10165 (2020)

    Google Scholar 

  36. Xu, Y., Zhang, Q., Zhang, J., Tao, D.: Vitae: vision transformer advanced by exploring intrinsic inductive bias. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  37. Yang, L., Peng, H., Zhang, D., Fu, J., Han, J.: Revisiting anchor mechanisms for temporal action localization. IEEE Trans. Image Process. 29, 8535–8548 (2020)

    Article  MATH  Google Scholar 

  38. Yu, T., Ren, Z., Li, Y., Yan, E., Xu, N., Yuan, J.: Temporal structure mining for weakly supervised action detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5522–5531 (2019)

    Google Scholar 

  39. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74936-3_22

    Chapter  Google Scholar 

  40. Zeng, R., et al.: Graph convolutional networks for temporal action localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7094–7103 (2019)

    Google Scholar 

  41. Zhang, Q., Xu, Y., Zhang, J., Tao, D.: Vitaev2: vision transformer advanced by exploring inductive bias for image recognition and beyond. arXiv preprint. arXiv:2202.10108 (2022)

  42. Zhao, C., Thabet, A.K., Ghanem, B.: Video self-stitching graph network for temporal action localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13658–13667 (2021)

    Google Scholar 

  43. Zhao, P., Xie, L., Ju, C., Zhang, Y., Wang, Y., Tian, Q.: Bottom-up temporal action localization with mutual regularization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 539–555. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_32

    Chapter  Google Scholar 

  44. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable transformers for end-to-end object detection. arXiv preprint. arXiv:2010.04159 (2020)

  45. Zhu, Z., Tang, W., Wang, L., Zheng, N., Hua, G.: Enriching local and global contexts for temporal action localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13516–13525 (2021)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the Major Science and Technology Innovation 2030 “New Generation Artificial Intelligence" key project (No. 2021ZD0111700), National Natural Science Foundation of China under Grant 62132002, Grant 61922006 and Grant 62102206.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiong Cao or Jia Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 311 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, D. et al. (2022). ReAct: Temporal Action Detection with Relational Queries. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13670. Springer, Cham. https://doi.org/10.1007/978-3-031-20080-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20080-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20079-3

  • Online ISBN: 978-3-031-20080-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics