Skip to main content

Towards Topology Optimization of Pressure-Driven Soft Robots

  • Conference paper
  • First Online:
Microactuators, Microsensors and Micromechanisms (MAMM 2022)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 126))

Included in the following conference series:

Abstract

Soft robots are made of compliant materials that perform their tasks by deriving motion from elastic deformations. They are used in various applications, e.g., for handling fragile objects, navigating sensitive/complex environments, etc., and are typically actuated by Pneumatic/hydraulic loads. Though demands for soft robots are continuously increasing in various engineering sectors, due to the lack of systematic approaches, they are primarily designed manually. This paper presents a systematic density-based topology optimization approach to designing soft robots while considering the design-dependent behavior of the actuating loads. We use the Darcy law with the conceptualized drainage term to model the design-dependent nature of the applied pressure loads. The standard finite element is employed to evaluate the consistent nodal loads from the obtained pressure field. The robust topology optimization formulation is used with the multi-criteria objective. The success of the presented approach is demonstrated by designing a member/soft robot of the pneumatic networks (PneuNets). The optimized member is combined in several series to get different PneuNets. Their CAD models are generated, and they are studied with high-pressure loads in a commercial software. Depending upon the number of members in the PneuNets, different output motions are noted.

Science & Engineering Research Board, Department of Science and Technology, Government of India under the project file number RJF/2020/000023.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xavier, M.S., Tawk, C.D., Zolfagharian, A., Pinskier, J., Howard, D., Young, T., Lai, J., Harrison, S.M., Yong, Y.K., Bodaghi, M., et al.: Soft pneumatic actuators: a review of design, fabrication, modeling, sensing, control and applications. IEEE Access (2022)

    Google Scholar 

  2. Kumar, P.: HoneyTop90: A 90-line MATLAB code for topology optimization using honeycomb tessellation. Optimization and Engineering, pp. 1–18 (2022)

    Google Scholar 

  3. Kumar, P., Frouws, J.S., Langelaar, M.: Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method. Struct. Multi. Optim. 61(4), 1637–1655 (2020). https://doi.org/10.1007/s00158-019-02442-0

    Article  MathSciNet  Google Scholar 

  4. Hiller, J., Lipson, H.: Automatic design and manufacture of soft robots. IEEE Trans. Robot. 28(2), 457–466 (2011)

    Article  Google Scholar 

  5. Chen, F., Xu, W., Zhang, H., Wang, Y., Cao, J., Wang, M.Y., Ren, H., Zhu, J., Zhang, Y.: Topology optimized design, fabrication, and characterization of a soft cable-driven gripper. IEEE Robot. Autom. Lett. 3(3), 2463–2470 (2018)

    Article  Google Scholar 

  6. Zhang, H., Kumar, A.S., Fuh, J.Y.H., Wang, M.Y.: Design and development of a topology-optimized three-dimensional printed soft gripper. Soft Robot. 5(5), 650–661 (2018)

    Article  Google Scholar 

  7. Yin, L., Ananthasuresh, G.K.: Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct. Multi. Optim. 23(1), 49–62 (2001)

    Article  Google Scholar 

  8. Sigmund, O.: On the design of compliant mechanisms using topology optimization. J. Struct. Mech. 25(4), 493–524 (1997)

    Google Scholar 

  9. Wang, F., Lazarov, B.S., Sigmund, O.: On projection methods, convergence and robust formulations in topology optimization. Struct. Multi. Optim. 43(6), 767–784 (2011)

    Article  MATH  Google Scholar 

  10. Kumar, P., Fanzio, P., Sasso, L., Langelaar, M.: Compliant fluidic control structures: concept and synthesis approach. Comput. Struct. 216, 26–39 (2019)

    Article  Google Scholar 

  11. Zhu, B., Zhang, X., Zhang, H., Liang, J., Zang, H., Li, H., Wang, R.: Design of compliant mechanisms using continuum topology optimization: a review. Mech. Mach. Theory 143, 103622 (2020)

    Article  Google Scholar 

  12. Kumar, P., Schmidleithner, C., Larsen, N., Sigmund, O.: Topology optimization and 3D printing of large deformation compliant mechanisms for straining biological tissues. Struct. Multi. Optim. 63(3), 1351–1366 (2021)

    Article  MathSciNet  Google Scholar 

  13. Kumar, P., Sauer, R.A., Saxena, A.: On topology optimization of large deformation contact-aided shape morphing compliant mechanisms. Mech. Mach. Theory 156, 104135 (2021)

    Article  Google Scholar 

  14. Hammer, V.B., Olhoff, N.: Topology optimization of continuum structures subjected to pressure loading. Struct. Multi. Optim. 19(2), 85–92 (2000). https://doi.org/10.1007/s001580050088

    Article  Google Scholar 

  15. Chen, B.C., Silva, E.C., Kikuchi, N.: Advances in computational design and optimization with application to mems. Int. J. Numer. Methods Eng. 52(1–2), 23–62 (2001)

    Article  MathSciNet  Google Scholar 

  16. Sigmund, O., Clausen, P.M.: Topology optimization using a mixed formulation: an alternative way to solve pressure load problems. Comput. Methods Appl. Mech. Eng. 196(13–16), 1874–1889 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Panganiban, H., Jang, G.W., Chung, T.J.: Topology optimization of pressure-actuated compliant mechanisms. Finite Elem. Anal. Des. 46(3), 238–246 (2010)

    Article  Google Scholar 

  18. Vasista, S., Tong, L.: Design and testing of pressurized cellular planar morphing structures. AIAA J. 50(6), 1328–1338 (2012)

    Article  Google Scholar 

  19. de Souza, E.M., Silva, E.C.N.: Topology optimization applied to the design of actuators driven by pressure loads. Struct. Multi. Optim. 61(5), 1763–1786 (2020). https://doi.org/10.1007/s00158-019-02421-5

    Article  MathSciNet  Google Scholar 

  20. Kumar, P., Langelaar, M.: On topology optimization of design-dependent pressure-loaded three-dimensional structures and compliant mechanisms. Int. J. Numer. Methods Eng. 122(9), 2205–2220 (2021)

    Article  MathSciNet  Google Scholar 

  21. Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., Whitesides, G.M.: Multigait soft robot. Proc. Natl. Acad. Sci. 108(51), 20400–20403 (2011)

    Article  Google Scholar 

  22. Kumar, P., Langelaar, M.: Topological synthesis of fluidic pressure-actuated robust compliant mechanisms. Mech. Mach. Theory 174, 104871 (2022)

    Article  Google Scholar 

  23. Saxena, A., Ananthasuresh, G.K.: On an optimal property of compliant topologies. Struct. Multi. Optim. 19(1), 36–49 (2000)

    Article  Google Scholar 

  24. Bruns, T.E., Tortorelli, D.A.: Topology optimization of non-linear elastic structures and compliant mechanisms. Comput. Methods Appl. Mech. Eng. 190(26), 3443–3459 (2001)

    Article  MATH  Google Scholar 

  25. Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multi. Optim. 33(4–5), 401–424 (2007)

    Article  Google Scholar 

  26. Svanberg, K.: The method of moving asymptotes-a new method for structural optimization. Int. J. Numer. Methods Eng. 24(2), 359–373 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Caasenbrood, B., Pogromsky, A., Nijmeijer, H.: A computational design framework for pressure-driven soft robots through nonlinear topology optimization. In: 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), pp. 633–638. IEEE (2020)

    Google Scholar 

  28. Kumar, P., Saxena, A., Sauer, R.A.: Implementation of self contact in path generating compliant mechanisms. In: Microactuators and Micromechanisms, pp. 251–261. Springer (2017)

    Google Scholar 

  29. Kumar, P., Saxena, A., Sauer, R.A.: Computational synthesis of large deformation compliant mechanisms undergoing self and mutual contact. J. Mech. Des. 141(1), 012302 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhat Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, P. (2023). Towards Topology Optimization of Pressure-Driven Soft Robots. In: Pandey, A.K., Pal, P., Nagahanumaiah, Zentner, L. (eds) Microactuators, Microsensors and Micromechanisms. MAMM 2022. Mechanisms and Machine Science, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-031-20353-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20353-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20352-7

  • Online ISBN: 978-3-031-20353-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics