Skip to main content

Bounds on Oblivious Multiparty Quantum Communication Complexity

  • Conference paper
  • First Online:
LATIN 2022: Theoretical Informatics (LATIN 2022)

Abstract

The main conceptual contribution of this paper is investigating quantum multiparty communication complexity in the setting where communication is oblivious. This requirement, which to our knowledge is satisfied by all quantum multiparty protocols in the literature, means that the communication pattern, and in particular the amount of communication exchanged between each pair of players at each round is fixed independently of the input before the execution of the protocol. We show, for a wide class of functions, how to prove strong lower bounds on their oblivious quantum k-party communication complexity using lower bounds on their two-party communication complexity. We apply this technique to prove tight lower bounds for all symmetric functions with AND gadget, and in particular obtain an optimal \(\varOmega (k\sqrt{n})\) lower bound on the oblivious quantum k-party communication complexity of the n-bit Set-Disjointness function. We also show the tightness of these lower bounds by giving (nearly) matching upper bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This way of distributing inputs is called the number-in-hand model. There exists another model, called the number-on-the-forehead model, which we do not consider in this paper.

  2. 2.

    We will show later (in Theorem 3 in Sect. 5) how to obtain an improved \(O(k\sqrt{n})\) upper bound based on the protocol from [1].

  3. 3.

    Note that in the two-party setting, the notions of oblivious communication complexity and non-oblivious communication complexity essentially coincide, since any non-oblivious communication protocol can be converted into an oblivious communication protocol by increasing the complexity by a factor at most two. To see this, without loss of generality assume that each player sends only one qubit at each round.

  4. 4.

    Trivially, players can send classical messages using quantum communication in this communication model.

  5. 5.

    To show \({\text {QCC}}^{2M}(f, \varepsilon ) \le {\text {QCC}}^M_\textrm{Co}(f, \varepsilon )\), assign \(P_1\) the role of the coordinator. To show \({\text {QCC}}^M_\textrm{Co}(f, \varepsilon ) \le 2{\text {QCC}}^M(f, \varepsilon )\), consider the coordinator only passes messages without performing any operation.

  6. 6.

    Although a function \(f: \{0, 1\}^n \rightarrow \{0, 1\}\) is generally said to be symmetric when any permutation on the input does not change the value of f, in this paper we focus on functions of the form \(f : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}\), and use the same definition for symmetric functions (predicates) as in [24].

  7. 7.

    In Fig. 1, \(U_i\) and \(U_i^\textrm{out}\) denote classical or quantum operations and \(\otimes \) denotes the operation of attaching registers. \(U_i^\textrm{out}\) usually includes measurement operations to output \(f_k(x_1, x_2, x_3)\).

  8. 8.

    If \(n^{1/3}\) is not an integer, inputs are embedded to a larger cube of size \(\lceil n^{1/3}\rceil ^3\). In this case, for any coordinate \(i \in \lceil n^{1/3}\rceil ^3 \setminus [n]\), the i-th inputs \(x_i\) and \(y_i\) are set to 0.

  9. 9.

    Here we use the fact that for any \(n_0 \le \frac{n}{2}\), \(\log \left( \varSigma _{m = n - n_0 + 1}^n \left( {\begin{array}{c}n\\ m\end{array}}\right) \right) = O(n_0 \log n)\).

References

  1. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. In: 44th Annual IEEE Symposium on Foundations of Computer Science. pp. 200–209 (2003). https://doi.org/10.1109/SFCS.2003.1238194

  2. Braverman, M., Ellen, F., Oshman, R., Pitassi, T., Vaikuntanathan, V.: A tight bound for set disjointness in the message-passing model. In: 54th Annual Symposium on Foundations of Computer Science, pp. 668–677 (2013). https://doi.org/10.1109/FOCS.2013.77

  3. Braverman, M., Garg, A., Ko, Y.K., Mao, J., Touchette, D.: Near-optimal bounds on the bounded-round quantum communication complexity of disjointness. SIAM J. Comput. 47(6), 2277–2314 (2018). https://doi.org/10.1137/16M1061400

    Article  MathSciNet  MATH  Google Scholar 

  4. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001). https://doi.org/10.1103/PhysRevLett.87.167902

    Article  Google Scholar 

  5. Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and computation. In: 30th Annual ACM Symposium on Theory of Computing, pp. 63–68 (1998). https://doi.org/10.1145/276698.276713

  6. Buhrman, H., van Dam, W., Høyer, P., Tapp, A.: Multiparty quantum communication complexity. Phys. Rev. A 60, 2737–2741 (1999). https://doi.org/10.1103/PhysRevA.60.2737

    Article  Google Scholar 

  7. Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A., Suomela, J.: Algebraic methods in the congested clique. Distrib. Comput. 32(6), 461–478 (2016). https://doi.org/10.1007/s00446-016-0270-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Chakraborty, S., Chattopadhyay, A., Høyer, P., Mande, N.S., Paraashar, M., de Wolf, R.: Symmetry and quantum query-to-communication simulation. In: 39th International Symposium on Theoretical Aspects of Computer Science, vol. 219, pp. 20:1–20:23 (2022). https://doi.org/10.4230/LIPIcs.STACS.2022.20

  9. Chattopadhyay, A., Pitassi, T.: SIGACT news complexity theory column 67. SIGACT News 41(3), 58 (2010). https://doi.org/10.1145/1855118.1886592

    Article  Google Scholar 

  10. Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication. Phys. Rev. A 56(2), 1201 (1997). https://doi.org/10.1103/PhysRevA.56.1201

    Article  Google Scholar 

  11. Cleve, R., van Dam, W., Nielsen, M., Tapp, A.: Quantum entanglement and the communication complexity of the inner product function. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp. 61–74. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49208-9_4

    Chapter  MATH  Google Scholar 

  12. Drucker, A., Kuhn, F., Oshman, R.: The communication complexity of distributed task allocation. In: ACM Symposium on Principles of Distributed Computing, PODC 2012, pp. 67–76 (2012). https://doi.org/10.1145/2332432.2332443

  13. Fiat, A., Woeginger, G.J. (eds.): Online Algorithms: The State of the Art. Lecture Notes in Computer Science, vol. 1442. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0029561

    Book  MATH  Google Scholar 

  14. Jain, R., Radhakrishnan, J., Sen, P.: A lower bound for the bounded round quantum communication complexity of set disjointness. In: 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 220–229 (2003). https://doi.org/10.1109/sfcs.2003.1238196

  15. Kalyanasundaram, B., Schintger, G.: The probabilistic communication complexity of set intersection. SIAM J. Discret. Math. 5(4), 545–557 (1992). https://doi.org/10.1137/0405044

    Article  MathSciNet  MATH  Google Scholar 

  16. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1996). https://doi.org/10.1017/CBO9780511574948

    Book  MATH  Google Scholar 

  17. Le Gall, F., Nakajima, S.: Multiparty quantum communication complexity of triangle finding. In: 12th Conference on the Theory of Quantum Computation, Communication and Cryptography (2018). https://doi.org/10.4230/LIPIcs.TQC.2017.6

  18. Lee, T., Schechtman, G., Shraibman, A.: Lower bounds on quantum multiparty communication complexity. In: 24th Annual IEEE Conference on Computational Complexity, pp. 254–262 (2009). https://doi.org/10.1109/ccc.2009.24

  19. Ni, L.M., McKinley, P.K.: A survey of wormhole routing techniques in direct networks. Computer 26(2), 62–76 (1993). https://doi.org/10.1109/2.191995

    Article  Google Scholar 

  20. Paturi, R.: On the degree of polynomials that approximate symmetric Boolean functions (preliminary version). In: 24th Annual ACM Symposium on Theory of Computing, pp. 468–474 (1992). https://doi.org/10.1145/129712.129758

  21. Räcke, H., Schmid, S.: Compact oblivious routing. In: 27th Annual European Symposium on Algorithms, vol. 144, pp. 75:1–75:14 (2019). https://doi.org/10.4230/LIPIcs.ESA.2019.75

  22. Rao, A., Yehudayoff, A.: Communication Complexity: and Applications. Cambridge University Press, Cambridge (2020). https://doi.org/10.1017/9781108671644

    Book  MATH  Google Scholar 

  23. Razborov, A.A.: On the distributional complexity of disjointness. Theoret. Comput. Sci. 106(2), 385–390 (1992). https://doi.org/10.1016/0304-3975(92)90260-m

    Article  MathSciNet  MATH  Google Scholar 

  24. Razborov, A.A.: Quantum communication complexity of symmetric predicates. Izvestiya Math. 67(1), 145 (2003). https://doi.org/10.1070/im2003v067n01abeh000422

    Article  MathSciNet  MATH  Google Scholar 

  25. Rosén, A., Urrutia, F.: A new approach to multi-party peer-to-peer communication complexity. In: 10th Innovations in Theoretical Computer Science, vol. 124, pp. 64:1–64:19 (2018). https://doi.org/10.4230/LIPIcs.ITCS.2019.64

  26. Sherstov, A.A.: The pattern matrix method. SIAM J. Comput. 40(6), 1969–2000 (2011). https://doi.org/10.1137/080733644

    Article  MathSciNet  MATH  Google Scholar 

  27. Tani, S., Nakanishi, M., Yamashita, S.: Multi-party quantum communication complexity with routed messages. IEICE Trans. Inf. Syst. 92(2), 191–199 (2009). https://doi.org/10.1587/transinf.e92.d.191

    Article  MATH  Google Scholar 

  28. Touchette, D.: Quantum information complexity. In: 47th Annual ACM Symposium on Theory of Computing, STOC 2015, pp. 317–326. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2746539.2746613

  29. Yao, A.C.C.: Quantum circuit complexity. In: 34th Annual Foundations of Computer Science, pp. 352–361 (1993). https://doi.org/10.1109/sfcs.1993.366852

  30. Yao, A.C.C.: Some complexity questions related to distributive computing (preliminary report). In: 11th Annual ACM Symposium on Theory of Computing, pp. 209–213 (1979). https://doi.org/10.1145/800135.804414

  31. Zhang, Z., Shi, Y.: Communication complexities of symmetric xor functions. Quantum Inf. Comput. 9(3), 255–263 (2009). https://doi.org/10.26421/qic9.3-4-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

FLG was partially supported by JSPS KAKENHI grants Nos. JP16H01705, JP19H04066, JP20H00579, JP20H04139 and by MEXT Q-LEAP grants Nos. JPMXS0118067394 and JPMXS0120319794. DS would like to take this opportunity to thank the “Nagoya University Interdisciplinary Frontier Fellowship” supported by JST and Nagoya University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiki Suruga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le Gall, F., Suruga, D. (2022). Bounds on Oblivious Multiparty Quantum Communication Complexity. In: Castañeda, A., Rodríguez-Henríquez, F. (eds) LATIN 2022: Theoretical Informatics. LATIN 2022. Lecture Notes in Computer Science, vol 13568. Springer, Cham. https://doi.org/10.1007/978-3-031-20624-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20624-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20623-8

  • Online ISBN: 978-3-031-20624-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics