Skip to main content

Over View of Symbiosis Mechanisms and Soil Quality Management Practices to Combat Environmental Changes

  • Chapter
  • First Online:
Climate Change and Microbiome Dynamics

Abstract

Higher input requirements for high yields result in environmental issues and the depletion of natural resources in agricultural systems. The wide genetic variation in microbial species reveals that microorganisms with high potential that can adapt to different environmental conditions can be identified. Soil quality is defined as a soil feature that promotes biological activity, protects and maintains environmental quality, and fulfills the function of plant production within the boundaries of an ecosystem. The transformation of phosphorus and nitrogen, which are the building blocks of living cells, from organic form to inorganic and useful form is necessary for plants to be taken up by the microorganisms in the soil. The fixation of elemental nitrogen in the atmosphere takes place by microorganisms living symbiotically as well as non-symbiotically. Plant growth promoting bacteria (PGPR), on the other hand, colonize the rhizosphere and provide the potential to be a biological fertilizer in plant production as well as a biological control agent. Additionally, PGPR exhibits synergistic or antagonistic interactions with the soil and rhizosphere microorganisms that help or speed up plant growth. Biochar, a carbonaceous substance, is being used more frequently to clean up anthropogenically contaminated soils and restore their ecological functions. In addition, due to its high surface area, porosity, functional groups on its surface, and surface charge, biochar is an effective additive for the removal of inorganic and organic pollutants in water and soil. We think that this chapter will help answer questions about biochar's feasibility, effectiveness, and safety so that it can be used to make the soil more fertile and get rid of pollutants in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steffan JJ, Brevik EC, Burgess LC, Cerda A (2018) The effect of soil on human health: an overview. Eur J Soil Sci 69(1):159–171. https://doi.org/10.1111/ejss.12451

    Article  CAS  Google Scholar 

  2. Orgiazzi A, Bardgett RD, Barrios E, Behan-Pelletier V, Briones MJI, Chotte JL, De Deyn GB, Eggleton P, Fierer N, Fraser T, Hedlund K, Jeffrey S, Johnson NC, Jones A, Kandeler E, Ortas I (2018) Organomineral fertilizer workshop, papers, 1st edn, May, Istanbul. ISBN: 978-975-7169-89-5

    Google Scholar 

  3. Ipek M, Eşitken A (2017) The actions of PGPR on micronutrient availability in soil and plant under calcareous soil conditions: an evaluation over Fe nutrition. Plant-microbe interactions in agro-ecological perspectives, pp 81–100. https://doi.org/10.1007/978-981-10-6593-4_4

  4. Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017) The role of soil microorganisms in plant mineral nutrition—current knowledge and future directions. Front Plant Sci 8:1617. https://doi.org/10.3389/fpls.2017.01617

    Article  Google Scholar 

  5. Bever JD (2003) Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol 157(3):465–473. https://doi.org/10.1046/j.1469-8137.2003.00714.x

    Article  Google Scholar 

  6. Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102. https://doi.org/10.4172/1948-5948.1000188

    Article  CAS  Google Scholar 

  7. Prasad M, Chaudhary M, Choudhary M, Kumar TK, Kumar Jat L (2017) Rhizosphere microorganisms towards soil sustainability and nutrient acquisition. agriculturally important microbes for sustainable agriculture, pp 31–49. https://doi.org/10.1007/978-981-10-5589-8_2

  8. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57(1):233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159

    Article  CAS  Google Scholar 

  9. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356. https://doi.org/10.3389/fpls.2013.00356

    Article  Google Scholar 

  10. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64(1):807–838. https://doi.org/10.1146/annurevarplant-050312-120106

    Article  CAS  Google Scholar 

  11. Buée M, De Boer W, Martin F, Van OL, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321(1–2):189–212. https://doi.org/10.1007/s11104-009-9991-3

    Article  CAS  Google Scholar 

  12. Akhtar N, Qureshi MA, Iqbal A, Ahmad MJ, Khan KH (2012) Influence of Azotobacter and IAA on symbiotic performance of Rhizobium and yield parameters of lentil. J Agric Res 50(3):361–372

    Google Scholar 

  13. Alma MH, Altıkat A (2021) Biochar and soil physical properties. J Inst Sci Technol 11(4):2599–2612

    Article  Google Scholar 

  14. Shearer D, Gaunt J, Peacocke GVC (2013) US patent no 8,361,186. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  15. McKendry P (2002) Energy production from biomass (part 1), Overview of biomass. Biores Technol 83(1):37–46

    Article  CAS  Google Scholar 

  16. Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42(8):1619–1640

    Article  CAS  Google Scholar 

  17. Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Biores Technol 114:644–653

    Article  CAS  Google Scholar 

  18. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil, a critical review. Energy Fuels 20(3):848–889

    Article  CAS  Google Scholar 

  19. Duku MH, Gu S, Ben Hagan E (2011) Biochar production potential in Ghana—a review. Renew Sustain Energy Rev 15:3539–3551

    Article  Google Scholar 

  20. Lehmann J, Da Silva JP, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  21. Karer J, Wımmer B, Zehetner F, Kloss S, Soja G (2013) Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions. Agr Food Sci 22:390–403

    Article  Google Scholar 

  22. Laird DA (2008) The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agron J 100:178–181

    Article  Google Scholar 

  23. Case SDC, Mcnamara NP, Reay DS, Whitaker J (2012) The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil—the role of soil aeration. Soil Biol Biochem 51:125–134

    Article  CAS  Google Scholar 

  24. Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224–1235

    Article  CAS  Google Scholar 

  25. Rillig MC, Wagner M, Salem M, Antunes PM, George C, Ramke HG, Tıtırıcı MM, Antonietti M (2010) Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza. Appl Soil Ecol 45:238–242

    Article  Google Scholar 

  26. Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  27. Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Aust J Soil Res 45:629–634

    Article  CAS  Google Scholar 

  28. Bayer C, Martin-Neto L, Mielniczuk J, Pillon CN, Sangoi L (2001) Changes in soil organic matter fractions under subtropical no-till cropping systems. Soil Sci Soc Am J 65:1473–1478

    Google Scholar 

  29. Lal R, Mahboubi AA, Fausey NR (1994) Long-term tillage and rotation effects on properties of a central Ohio soil. Soil Sci Soc Am J 58:517–522

    Article  Google Scholar 

  30. Unger PW (1997) Aggregate and organic carbon concentration interrelationships of a Torrertic Paleustoll. Soil Tillage Res 42:95–113

    Article  Google Scholar 

  31. Suliman W, Harsh JB, Abu-Lail NI, Fortuna AM, Dallmeyer I, Garcia-Pérez M (2017) The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. Sci Total Environ 574:139–147

    Article  ADS  CAS  Google Scholar 

  32. Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202–203:183–191

    Article  ADS  Google Scholar 

  33. Oguntunde PG, Abiodun BJ, Ajayi AE, van de Giesen N (2008) Effects of charcoal production on soil physical properties in Ghana. J Plant Nutrit Soil Sci 171:591–596

    Article  CAS  Google Scholar 

  34. Sombroek W, Ruivo MDL, Fearnside PM, Glaser B, Lehmann J (2003) Amazonian Dark Earths as carbon stores and sinks, Amazonian Dark Earths. Springer, pp 125–139

    Google Scholar 

  35. Singht KK, Colvin TS, Erbach DC, Mughal AQ (1992) Tilth index: an approach to quantifying soil tilth. Trans ASAE 35(6):1777–1785

    Article  Google Scholar 

  36. McVay KA, Budde JA, Fabrizzi K, Mikha MM, Rice CW, Schlegel AJ, Peterson DE, Sweeney DW, Thompson C (2006) Management effects on soil physical properties in long-term tillage studies in Kansas. Soil Sci Soc Am J 70:434–438

    Article  CAS  Google Scholar 

  37. Dexter AR (2004) Soil physical quality: Part II. Friability, tillage, tilth and hard-setting. Geoderma 120:215–225

    Google Scholar 

  38. Craul PJ (1999) Urban soils: applications and practices. Wiley, Toronto

    Google Scholar 

  39. Janzen HH, Campbell CA, Ellert BH, Bremer E (1997) Soil organic matter dynamics and their relationship to soil quality. Dev Soil Sci 25:277–292

    Google Scholar 

  40. Rolda´n A, Caravaca F, Herna´ndez MT, Garcı´a C, Sa´nchez-Brito C, Vela´squez M, Tiscaren˜o M (2003) No-tillage, crop residue additions, and legume cover cropping effects on soil quality characteristics under maize in Patzcuaro watershed (Mexico). Soil Tillage Res 72:65–73

    Google Scholar 

  41. Lal R, Kimble J, Follett RF (1998) Need for research and need for action. CRC Press, Boca Raton, FL, pp 447–454

    Google Scholar 

  42. Campbell CA, Mc Conkey BG, Bierderbeck VO, Zenner RP, Curtin D, Peru MR (1998) Long-term effects of tillage and fallow-frequency on soil quality attributes in a clay soil in semiarid southwestern Saskatchewan. Soil Tillage Res 46:135–144

    Article  Google Scholar 

  43. Feng Y, Motta AC, Reeves DW, Burmester CH, Van S, Osborne JA (2003) Soil microbial communities under conventional-till and no-till continuous cotton systems. Soil Biol Biochem 35:1693–1703

    Article  CAS  Google Scholar 

  44. Ghuman BS, Sur HS (2001) Tillage and residue management effects on soil properties and yields of rainfed maize and wheat in a subhumid subtropical climate. Soil Tillage Res 58:1–10

    Article  Google Scholar 

  45. Fageria N, Baligar V (2008) Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production. Adv Agron 99:345–399

    Article  CAS  Google Scholar 

  46. Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macêdo JLV, Blum WE, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  47. Lashari MS, Liu Y, Li L, Pan W, Fu J, Pan G, Zheng J, Zheng J, Zhang X, Yu X (2013) Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Res 144:113–118

    Article  Google Scholar 

  48. Joseph S, Peacocke C, Lehmann J, Munroe P (2009) Developing a biochar classification and test methods. Biochar Environ Manage Sci Technol 107–126

    Google Scholar 

  49. Cheng C-H, Lehmann J (2009) Ageing of black carbon along a temperature gradient. Chemosphere 75:1021–1027

    Article  ADS  CAS  Google Scholar 

  50. Lehmann J, Joseph S (2015) Biochar for environmental management: science, technology and implementation, 2nd edn. Routledge, London and New York

    Book  Google Scholar 

  51. Mukome FN, Kilcoyne AL, Parikh SJ (2014) Alteration of biochar carbon chemistry during soil incubations: SR-FTIR and NEXAFS investigation. Soil Sci Soc Am J 78:1632–1640

    Article  Google Scholar 

  52. Cheng CH, Lehmann J, Engelhard MH (2008) Natural oxidation of black carbon in soils: changes in molecular forms and surface charge along a climosequence. Geochemica et Cosmochimica Acta 72:1598–1610

    Article  ADS  CAS  Google Scholar 

  53. Li M, Liu Q, Lou Z, Wang Y, Zhang Y, Qian G (2014) Method to characterize acidbase behaviour of biochar: site modelling and theoretical simulation. Sustain Chem Eng 2:2501–2509

    Article  CAS  Google Scholar 

  54. Silber A, Levkovitch I, Graber ER (2010) pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environ Sci Technol 44:19318–19323

    Article  ADS  Google Scholar 

  55. Subedi R, Taupe N, Pelissetti S, Petruzzelli L, Bertora C, Leahy JJ, Grignani C (2016) Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: influence of pyrolysis temperature and feedstock type. J Environ Manage 166:73–83

    Article  CAS  Google Scholar 

  56. Agegnehu G, Bird M, Nelson P, Bass A (2015) The ameliorating effects of biochar and compost on soil quality and plant growth on a Ferralsol. Soil Res 53:1–12

    Article  CAS  Google Scholar 

  57. Alburquerque JA, Calero JM, Barrón V, Torrent J, del Campillo MC, Gallardo A, Villar R (2014) Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J Plant Nutrit Soil Sci 177:16–25

    Article  Google Scholar 

  58. DeLuca TH, MacKenzie MD, Gundale MJ (2009) Biochar effects on soil nutrient transformations. Biochar For Environmental Management. Earthscan publishing, London, pp 251–270

    Google Scholar 

  59. Buckley DH, Schmidt TM (2001) The structure of microbial communities in soil and the lasting impact of cultivation. Microb Ecol 42:11–21

    Article  CAS  Google Scholar 

  60. Kladivko EJ, Akhouri NM, Weesies G (1997) Earthworm populations and species distributions under notill and conventional tillage in Indiana and Illinois. Soil Biol Biochem 29:613–615

    Article  CAS  Google Scholar 

  61. Aslam T, Choudhary M, Sagar S (1999) Tillage impacts on soil microbial biomass C, N and P, earthworms and agronomy after two years of cropping following permanent pasture in New Zealand. Soil Tillage Res 51:103–111

    Article  Google Scholar 

  62. Malhi SS, Lemke R, Wang ZH, Chhabra BS (2006) Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Tillage Res 90:171–183

    Article  Google Scholar 

  63. Monokrousos N, Papatheodorou E, Diamantopoulos Stamou G (2006) Soil quality variables in organically and conventionally cultivated field sites. Soil Biol Biochem 38:1282–1289

    Google Scholar 

  64. Marinari S, Mancinelli R, Campiglia E, Grego S (2006) Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecol Indicat 701–711

    Google Scholar 

  65. Salinas-Garcia JR, Hons FM, Matocha JE, Zuberer DA (1997) Soil carbon and nitrogen dynamics as affected by long-term tillage and nitrogen fertilization. Biol Fert Soils 25:182–188

    Article  Google Scholar 

  66. Lone AH, Najar GR, Ganie MA, Sofi JA, Ali T (2015) Biochar for sustainable soil health: a review of prospects and concerns. Pedosphere 25:639–653

    Article  CAS  Google Scholar 

  67. Chen WF, Meng J, Han GM, Zhang WM (2013) Effect of biochar on microorganisms quantity and soil physicochemical property in rhizosphere of spinach (Spinacia oleracea L.). Appl Mech Mater 295:210–219

    Google Scholar 

  68. Lehmann J, Rillig MC, Thies JAC, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  69. Gomez J, Denef K, Stewart C, Zheng J, Cotrufo M (2014) Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur J Soil Sci 65:28–39

    Article  CAS  Google Scholar 

  70. Deb D, Kloft M, Lässig J, Walsh S (2016) Variable effects of biochar and P solubilizing microbes on crop productivity in different soil conditions. Agroecol Sustain Food Syst 40:145–168

    Article  Google Scholar 

  71. Thies JE, Rillig MC (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan, London, UK, pp 85–105

    Google Scholar 

  72. Abujabhah IS, Bound SA, Doyle R, Bowman JP (2016) Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Appl Soil Ecol 98:243–253

    Article  Google Scholar 

  73. Warnock DD, Mummey DL, McBride B, Major J, Lehmann J, Rillig MC (2010) Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl Soil Biol 46:450–456

    Article  Google Scholar 

  74. LeCroy C, Masiello CA, Rudgers JA, Hockaday WC, Silberg JJ (2013) Nitrogen, biochar, and mycorrhizae: alteration of the symbiosis and oxidation of the char surface. Soil Biol Biochem 58:248–254

    Article  CAS  Google Scholar 

  75. Birk J, Steiner C, Teixiera W, Zech W, Glaser B (2009) Microbial response to charcoal amendments and fertilization of a highly weathered tropical soil Amazonian dark earths. Wim Sombroek’s Vision, Springer, pp 309–324

    Google Scholar 

  76. Burger M, Jackson LE (2003) Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biol Biochem 35:29–36

    Article  CAS  Google Scholar 

  77. Biederman LA, Harpole SW (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5:202–214

    Article  CAS  Google Scholar 

  78. Ibrahim HM, Al-Wabel MI, Usman AR, Al-Omran A (2013) Effect of Conocarpus biochar application on the hydraulic properties of a sandy loam soil. Soil Sci 178(4):165–173

    Article  ADS  CAS  Google Scholar 

  79. Rahman MT, Zhu QH, Zhang ZB, Zhou H, Peng X (2017) The roles of organic amendments and microbial community in the improvement of soil structure of a Vertisol. Appl Soil Ecol 111:84–93

    Article  Google Scholar 

  80. Zheng H, Wang X, Luo X, Wang Z, Xing B (2018) Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation. Sci Total Environ 610:951–960

    Article  ADS  Google Scholar 

  81. Ouyang L, Wang F, Tang J, Yu L, Zhang R (2013) Effects of biochar amendment on soil aggregates and hydraulic properties. J Soil Sci Plant Nutr 13(4):991–1002

    Google Scholar 

  82. Soinne H, Hovi J, Tammeorg P, Turtola E (2014) Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma 219:162–167

    Article  ADS  Google Scholar 

  83. Brtnicky M, Hammerschmiedt T, Elbl J, Kintl A, Skulcova L, Radziemska M, Latal O, Baltazar T, Kobzova E, Holatko J (2021) The potential of biochar made from agricultural residues to increase soil fertility and microbial activity: impacts on soils with varying sand content. Agronomy 11(6):1174

    Article  CAS  Google Scholar 

  84. Demisie W, Liu Z, Zhang M (2014) Effect of biochar on carbon fractions and enzyme activity of red soil. CATENA 121:214–221

    Article  CAS  Google Scholar 

  85. Jien SH, Wang CS (2013) Effects of biochar on soil properties and erosion potential in a highly weathered soil. CATENA 110:225–233

    Article  CAS  Google Scholar 

  86. Ortas I (2018) Organomineral fertilizer workshop, papers, 1st edn, May, Istanbul. ISBN: 978-975-7169-89-5

    Google Scholar 

  87. Kołtowski M, Oleszczuk P (2015) Toxicity of biochars after polycyclic aromatic hydrocarbons removal by thermal treatment. Ecol Eng 75:79–85

    Article  Google Scholar 

  88. Wawra A, Friesl-Hanl W, Puschenreiter M, Soja G, Reichenauer T, Roithner C et al (2018) Degradation of polycyclic aromatic hydrocarbons in a mixed contaminated soil supported by phytostabilisation, organic and inorganic soil additives. Sci Total Environ 628:1287–1295

    Article  ADS  Google Scholar 

  89. Uchimiya M, Wartelle LH, Lima IM, Klasson KT (2010) Sorption of deisopropylatrazine on broiler litter biochars. J Agric Food Chem 58:12350–12356

    Article  CAS  Google Scholar 

  90. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  ADS  CAS  Google Scholar 

  91. Kong L, Gao Y, Zhou Q, Zhao X, Sun Z (2018) Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy. J Hazard Mater 343:276–284

    Article  CAS  Google Scholar 

  92. Ni N, Song Y, Shi R, Liu Z, Bian Y, Wang F et al (2017) Biochar reduces the bioaccumulation of PAHs from soil to carrot (Daucus carota L.) in the rhizosphere: a mechanism study. Sci Total Environ 601:1015–1023

    Google Scholar 

  93. Ni N, Wang F, Song Y, Bian Y, Shi R, Yang X et al (2018) Mechanisms of biochar reducing the bioaccumulation of PAHs in rice from soil: degradation stimulation vs immobilization. Chemosphere 196:288–296

    Article  ADS  CAS  Google Scholar 

  94. Chen B, Yuan M, Qian L (2012) Enhanced bioremediation of PAH-contaminated soil by immobilized bacteria with plant residue and biochar as carriers. J Soils Sediments 12(9):1350–1359

    Article  CAS  Google Scholar 

  95. Xiong B, Zhang Y, Hou Y, Arp HPH, Reid BJ, Cai C (2017) Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar. Chemosphere 182:316–324

    Google Scholar 

  96. Wang C, Chen S, Wu L, Zhang F, Cui J (2018) Wheat straw-derived biochar enhanced nitrification in a calcareous clay soil. Polish J Environ Stud. https://doi.org/10.15244/pjoes/76504

  97. Fang G, Gao J, Liu C, Dionysiou DD, Wang Y, Zhou D (2014) Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation. Environ Sci Technol 48(3):1902–1910

    Article  ADS  CAS  Google Scholar 

  98. Zhang Y, Xu X, Cao L, Ok YS, Cao X (2018) Characterization and quantification of electron donating capacity and its structure dependence in biochar derived from three waste biomasses. Chemosphere 211:1073–1081

    Article  ADS  CAS  Google Scholar 

  99. Yang J, Pan B, Li H, Liao S, Zhang D, Wu M et al (2015) Degradation of p-nitrophenol on biochars: role of persistent free radicals. Environ Sci Technol 50(2):694–700

    Article  ADS  Google Scholar 

  100. Sazykin IS, Sazykina MA, Khmelevtsova LE, Seliverstova EY, Karchava KS, Zhuravleva MV (2018) Antioxidant enzymes and reactive oxygen species level of the Achromobacter xylosoxidans bacteria during hydrocarbons biotransformation. Arch Microbiol 200:1057–1065

    Article  CAS  Google Scholar 

  101. Gorovtsov AV, Minkina TM, Mandzhieva SS, Perelomov LV, Soja G, Zamulina IV, Rajput VD, Sushkova SN, Mohan D, Yao J (2020) The mechanisms of biochar interactions with microorganisms in soil. Environ Geochem Health 42(8):2495–2518. https://doi.org/10.1007/s10653-019-00412-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadime Karabulut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karabulut, F., Shameem, N., Shafi, N., Parray, J.A., Hashem, A., Abd-Allah, E.F. (2023). Over View of Symbiosis Mechanisms and Soil Quality Management Practices to Combat Environmental Changes. In: Parray, J.A. (eds) Climate Change and Microbiome Dynamics. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-031-21079-2_14

Download citation

Publish with us

Policies and ethics