Skip to main content

Low-Power Nyquist ADCs

  • Chapter
  • First Online:
Analog and Mixed-Signal Circuits in Nanoscale CMOS

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

Analog-to-digital converters (ADCs) bridge the analog and digital worlds, which often confines the system’s performance. In portable or Internet of Things devices, the power budget is extremely tight, calling for low-power ADCs and sometimes even low supply voltage. While with a more complex modulation scheme and crowded spectrum utilization, a large dynamic range is still essential, motivating innovation in circuit, calibration, and architecture levels in the ADC designs. This chapter discusses four Nyquist ADC designs with outstanding energy efficiency. The first is a single-channel 12b 1GS/s ADC with a three-stage pipeline SAR architecture. We introduce next a SAR-TDC hybrid architecture, realizing 20 MS/s with 13b resolution. The third work is a pure pipeline ADC with a new timing arrangement, enabling a single-channel 3.3 GS/s 6b design. The last design is a time-interleaved 8b 10 GS/s TDC-based ADC. This chapter sets forth all the detailed design considerations of the four circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Louwsma, S., Tuijil, E., & Nauta, B. (2011). Time-interleaved analog-to-digital converters. Springer.

    Book  Google Scholar 

  2. Ali, A. M. A., et al. (2014, December). A 14 bit 1 GS/s RF sampling pipelined ADC with background calibration. IEEE Journal of Solid-State Circuits, 49(12), 2857–2867.

    Article  Google Scholar 

  3. Lagos, J., Hershberg, B. P., Martens, E., Wambacq, P., & Craninckx, J. (2019, March). A 1-GS/s, 12-b, single-channel pipelined ADC with dead-zone-degenerated ring amplifiers. IEEE Journal of Solid-State Circuits, 54(3), 646–658.

    Article  Google Scholar 

  4. Lee, C. C., & Flynn, M. P. (2010, June). A 12b 50MS/s 3.5mW SAR assisted 2-stage pipeline ADC. In Proceedings of the IEEE Symposium on VLSI Circuits (VLSIC) (pp. 239–240).

    Google Scholar 

  5. Zhu, Y., Chan, C., Sin, S., Seng-Pan, U., & Martins, R. P. (2012, June). A 34fJ 10b 500 MS/s partial-interleaving pipelined SAR ADC. In Proceedings of the IEEE Symposium on VLSI Circuits (VLSIC) (pp. 90–91).

    Google Scholar 

  6. Zhang, M., Noh, K., Fan, X., & Sánchez-Sinencio, E. (2017, November). A 0.8–1.2 V 10–50 MS/s 13-bit subranging pipelined-SAR ADC using a temperature-insensitive time-based amplifier. IEEE Journal of Solid-State Circuits, 52(11), 2991–3005.

    Article  Google Scholar 

  7. Jiang, W., Zhu, Y., Zhang, M., Chan, C.-H., & Martins, R. P. (2020, Feb). A temperature-stabilized single-channel 1-GS/s 60-dB SNDR SAR-assisted pipelined ADC with dynamic Gm-R-based amplifier. IEEE Journal of Solid-State Circuits, 55(2), 322–332.

    Article  Google Scholar 

  8. Zheng, Z., et al. (2022, June). A 3.3-GS/s 6-b fully dynamic pipelined ADC with linearized dynamic amplifier. IEEE Journal of Solid-State Circuits, 57(6), 1673–1683.

    Article  Google Scholar 

  9. Zhang, M., Chan, C.-H., Zhu, Y., & Martins, R. P. (2019, December). A 0.6-V 13-bit 20-MS/s two-step TDC-assisted SAR ADC with PVT tracking and speed-enhanced techniques. IEEE Journal of Solid-State Circuits, 54(12), 3396–3409.

    Article  Google Scholar 

  10. Zhang, M., Zhu, Y., Chan, C.-H., & Martins, R. P. (2020, December). An 8-bit 10-GS/s 16× interpolation-based time-domain ADC with <1.5-ps uncalibrated quantization steps. IEEE Journal of Solid-State Circuits, 55(12), 3225–3235.

    Article  Google Scholar 

  11. Harpe, P., Cantatore, E., & van Roermund, A. (2013, December). A 10b/12b 40 kS/s SAR ADC with data-driven noise reduction achieving up to 10.1b ENOB at 2.2 fJ/conversion-step. IEEE Journal of Solid-State Circuits, 48(12), 3011–3018.

    Article  Google Scholar 

  12. Vaz, B., et al. (2017, February). 16.1 A 13b 4GS/s digitally assisted dynamic 3-stage asynchronous pipelined-SAR ADC. In IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers (pp. 276–277).

    Google Scholar 

  13. Sehgal, R., Van Der Goes, F., & Bult, K. (2018, July). A 13-mW 64-dB SNDR 280-MS/s pipelined ADC using linearized integrating amplifiers. IEEE Journal of Solid-State Circuits, 53(7), 1878–1888.

    Article  Google Scholar 

  14. Iroaga, E., & Murmann, B. (2007, April). A 12-bit 75-MS/s pipelined ADC using incomplete settling. IEEE Journal of Solid-State Circuits, 42(4), 748–756.

    Article  Google Scholar 

  15. Huang, H., Sarkar, S., Elies, B., & Chiu, Y. (2017, February). A 12b 330MS/s pipelined-SAR ADC with PVT-stabilized dynamic amplifier achieving <1dB SNDR variation. In IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers (pp. 472–473).

    Google Scholar 

  16. Hershberg, B., Weaver, S., Sobue, K., Takeuchi, S., Hamashita, K., & Moon, U. (2012, December). Ring amplifiers for switched capacitor circuits. IEEE Journal of Solid-State Circuits, 47(12), 2928–2942.

    Article  Google Scholar 

  17. Hershberg, B., et al. (2019, February). A 6-to-600MS/s fully dynamic ringamp pipelined ADC with asynchronous event-driven clocking in 16nm. In IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers (pp. 68–70).

    Google Scholar 

  18. Verbruggen, B., Craninckx, J., Kuijk, M., Wambacq, P., & Van der Plas, G. (2010, February). A 2.6mW 6b 2.2GS/s 4-times interleaved fully dynamic pipelined ADC in 40nm digital CMOS. In IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers (pp. 296–297).

    Google Scholar 

  19. Sepke, T., Holloway, P., Sodini, C. G., & Lee, H. (2009, March). Noise analysis for comparator-based circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(3), 541–553.

    Article  MathSciNet  Google Scholar 

  20. Hashemi, S., & Razavi, B. (2014, August). A 7.1 mW 1 GS/s ADC with 48 dB SNDR at nyquist rate. IEEE Journal of Solid-State Circuits, 49(8), 1739–1750.

    Article  Google Scholar 

  21. Yu, L., Miyahara, M., & Matsuzawa, A. (2016, October). A 9-bit 1.8 GS/s 44 mW pipelined ADC using linearized open-loop amplifiers. IEEE Journal of Solid-State Circuits, 51(10), 2210–2221.

    Article  Google Scholar 

  22. Demosthenous, A., & Panovic, M. (2005, September). Low-voltage MOS linear transconductor/squarer and four-quadrant multiplier for analog VLSI. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(9), 1721–1731.

    Article  Google Scholar 

  23. Liu, C., Chang, S., Huang, G., Lin, Y., & Huang, C. (2010, June). A 1V 11fJ/conversion-step 10bit 10MS/s asynchronous SAR ADC in 0.18μm CMOS. In Proceedings of the IEEE Symposium on VLSI Circuits (VLSIC) (pp. 241–242).

    Google Scholar 

  24. Moon, K., et al. (2017, June). A 9.1 ENOB 21.7fJ/conversion-step 10b 500MS/s single-channel pipelined SAR ADC with a current-mode fine ADC in 28nm CMOS. In Proceedings of the IEEE Symposium on VLSI Circuits (VLSIC) (pp. C94–C95).

    Google Scholar 

  25. Kull, L., et al. (2017, February). 28.5 A 10b 1.5GS/s pipelined-SAR ADC with background second-stage common-mode regulation and offset calibration in 14nm CMOS FinFET. In IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers (pp. 474–475).

    Google Scholar 

  26. Oh, T., Venkatram, H., & Moon, U.-K. (2014, April). A time-based pipelined ADC using both voltage and time domain information. IEEE Journal of Solid-State Circuits, 49(4), 961–971.

    Article  Google Scholar 

  27. Chen, Y.-J., Chang, K.-H., & Hsieh, C.-C. (2016, February). A 2.02–5.16 fJ/conversion step 10 bit hybrid coarse-fine SAR ADC with time-domain quantizer in 90 nm CMOS. IEEE Journal of Solid-State Circuits, 51(2), 357–364.

    Article  Google Scholar 

  28. Muhlestein, J., Leuenberger, S., Sun, H., Xu, Y., & Moon, U.-K. (2017, April). A 73dB SNDR 20MS/s 1.28mW SAR-TDC using hybrid two-step quantization. In Proceedings of the IEEE CICC (pp. 2152–3630).

    Google Scholar 

  29. Zhu, S., Wu, B., Cai, Y., & Chiu, Y. (2018, April). A 2-GS/s 8-bit non-interleaved time-domain flash ADC based on remainder number system in 65-nm CMOS. IEEE Journal of Solid-State Circuits, 53(4), 1172–1183.

    Article  Google Scholar 

  30. Lim, Y., & Flynn, M. P. (2015, December). A 1 mW 71.5 dB SNDR 50 MS/s 13 bit fully differential ring amplifier based SAR-assisted pipeline ADC. IEEE Journal of Solid-State Circuits, 50(12), 2901–2911.

    Article  Google Scholar 

  31. Sanyal, A., & Sun, N. (2016, June). A 18.5-fJ/step VCO-based 0–1 MASH ΣΔ ADC with digital background calibration. In Proceedings of the IEEE Symposium on VLSI Circuits (VLSIC) (pp. 26–27).

    Google Scholar 

  32. Liu, C.-C., Huang, M.-C., & Tu, Y.-H. (2016, December). A 12 bit 100 MS/s SAR-assisted digital-slope ADC. IEEE Journal of Solid-State Circuits, 51(12), 2941–2950.

    Article  Google Scholar 

  33. Ding, M., Harpe, P., Liu, Y.-H., Busze, B., Philips, K., & de Groot, H. (2017, February). A 46 μW 13 b 6.4 MS/s SAR ADC with background mismatch and offset calibration. IEEE Journal of Solid-State Circuits, 52(2), 423–432.

    Article  Google Scholar 

  34. Devarajan, S., et al. (2017, December). A 12-b 10-GS/s interleaved pipeline ADC in 28-nm CMOS technology. IEEE Journal of Solid-State Circuits, 52(12), 3204–3218.

    Article  Google Scholar 

  35. Ali, A. M. A., et al. (2020, December). A 12-b 18-GS/s RF sampling ADC with an integrated wideband track-and-hold amplifier and background calibration. IEEE Journal of Solid-State Circuits, 55(12), 3210–3224.

    Article  Google Scholar 

  36. Chen, V. H., & Pileggi, L. (2013, June). An 8.5mW 5GS/s 6b flash ADC with dynamic offset calibration in 32nm CMOS SOI. In Proceedings of IEEE Symposium on VLSI Circuits (VLSIC) (pp. C264–C265).

    Google Scholar 

  37. Shu, Y. (2012, June). A 6b 3GS/s 11mW fully dynamic flash ADC in 40nm CMOS with reduced number of comparators. In Proceedings of IEEE Symposium on VLSI Circuits (VLSIC) (pp. 26–27).

    Google Scholar 

  38. Oh, D., Kim, J., Jo, D., Kim, W., Chang, D., & Ryu, S. (2019, January). A 65-nm CMOS 6-bit 2.5-GS/s 7.5-mW 8 $\times$ time-domain interpolating flash ADC with sequential slope-matching offset calibration. IEEE Journal of Solid-State Circuits, 54(1), 288–297.

    Article  Google Scholar 

  39. Verbruggen, B., Craninckx, J., Kuijk, M., Wambacq, P., & Van der Plas, G. (2010, October). A 2.6 mW 6 bit 2.2 GS/s fully dynamic pipeline ADC in 40 nm digital CMOS. IEEE Journal of Solid-State Circuits, 45(10), 2080–2090.

    Article  Google Scholar 

  40. Akter, M. S., Sehgal, R., van der Goes, F., Makinwa, K. A. A., & Bult, K. (2018, October). A 66-dB SNDR pipelined split-ADC in 40-nm CMOS using a class-AB residue amplifier. IEEE Journal of Solid-State Circuits, 53(10), 2939–2950.

    Article  Google Scholar 

  41. Zhu, S., Wu, B., Wu, B., Soppimath, K., & Chiu, Y. (2016, August). A skew-free 10 GS/s 6 bit CMOS ADC with compact time-domain signal folding and inherent DEM. IEEE Journal of Solid-State Circuits, 51(8), 1785–1796.

    Article  Google Scholar 

  42. Hassanpourghadi, M., & Chen, M. S.-W. (2019, April). A 2-way 7.3-bit 10 GS/s time-based folding ADC with passive pulse-shrinking cells. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC) (pp. 1–4).

    Google Scholar 

  43. Frans, Y., et al. (2017, April). A 56-Gb/s PAM4 wireline transceiver using a 32-way time-interleaved SAR ADC in 16-nm FinFET. IEEE Journal of Solid-State Circuits, 52(4), 1101–1110.

    Article  Google Scholar 

  44. Kull, L., et al. (2013, June). A 35 mW 8 b 8.8 GS/s SAR ADC with low-power capacitive reference buffers in 32 nm digital DOI CMOS. In Proceedings of the IEEE Symposium on VLSI Circuits (VLSIC) (pp. 260–261).

    Google Scholar 

  45. Cao, J., et al. (2017, February). A transmitter and receiver for 100Gb/s coherent networks with integrated 4×64GS/s 8b ADCs and DACs in 20nm CMOS. In IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers (pp. 484–485).

    Google Scholar 

  46. Greshishchev, Y. M., et al. (2010, February). A 40GS/s 6b ADC in 65nm CMOS. In IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers (pp. 390–391).

    Google Scholar 

  47. Duan, Y., & Alon, E. (2014, August). A 12.8 GS/s time-interleaved ADC with 25 GHz effective resolution bandwidth and 4.6 ENOB. IEEE Journal of Solid-State Circuits, 49(8), 1725–1738.

    Article  Google Scholar 

  48. Lee, M., & Abidi, A. A. (2008, April). A 9 b, 1.25 ps resolution coarse–fine time-to-digital converter in 90 nm CMOS that amplifies a time residue. IEEE Journal of Solid-State Circuits, 43(4), 769–777.

    Article  Google Scholar 

  49. Sall, E., & Vesterbacka, M. (2004, November). A multiplexer based decoder for flash analog-to-digital converters. In Proceedings of TENCON (pp. 250–253).

    Google Scholar 

  50. Miyashita, D., Kobayashi, H., Deguchi, J., Kousai, S., & Hamada, M. (2011, June). A -104dBc/Hz in-band phase noise 3GHz all digital PLL with phase interpolation based hierarchical time to digital convertor. In Proceedings of the IEEE Symposium on VLSI Circuits (VLSIC) (pp. 112–113).

    Google Scholar 

  51. Hashemi, S., & Razavi, B. (2014, May). Analysis of metastability in pipelined ADCs. IEEE Journal of Solid-State Circuits, 49(5), 1198–1209.

    Article  Google Scholar 

  52. Le Tual, S., Singh, P. N., Curis, C., & Dautriche, P. (2014, February). A 20GHz-BW 6b 10GS/s 32mW time-interleaved SAR ADC with master T&H in 28nm UTBB FDSOI technology. In IEEE International Solid-State Circuits Conference – (ISSCC) Digest of Technical Papers (pp. 382–383).

    Google Scholar 

  53. Chen, V. H.-C., & Pileggi, L. (2014, December). A 69.5 mW 20 GS/s 6b time-interleaved ADC with embedded time-to-digital calibration in 32 nm CMOS SOI. IEEE Journal of Solid-State Circuits, 49(12), 2891–2901.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Hang Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, M., Chan, CH., Zhu, Y., Martins, R.P. (2023). Low-Power Nyquist ADCs. In: Paulo da Silva Martins, R., Mak, PI. (eds) Analog and Mixed-Signal Circuits in Nanoscale CMOS. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-031-22231-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22231-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22230-6

  • Online ISBN: 978-3-031-22231-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics