Skip to main content

Scandium Master Alloy Production Via Sulfidation and Vacuum Aluminothermic Reduction

  • Conference paper
  • First Online:
Light Metals 2023 (TMS 2023)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

  • 2271 Accesses

Abstract

Scandium is a critical component for high strength aluminum products, yet manufacture is burdened by challenges in metal reduction and alloying. Current best practice begins with generation of an aluminum-scandium master alloy from oxide or halide precursors. However, this approach is characterized by high costs and large environmental impacts. Recent results have shown that employing a metal sulfide feedstock for aluminum master alloy production increases metal yield and improves process economics. Herein, we conduct the sulfidation of scandium oxide using elemental sulfur to generate a scandium sulfide intermediate, which we experimentally confirm to be amenable for reduction to metal. We demonstrate production of aluminum-scandium master alloy at the hundred-gram scale from scandium sulfide using aluminothermic reduction via reactive vacuum distillation. Chemical analysis is conducted to determine product purity and yield. Operating conditions to manufacture master alloys with scandium contents of 2 wt% and higher are tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad Z (2003) The Properties and Application of Scandium-Reinforced Aluminum. J. Miner. Met. Mater. Soc. 55:35–39

    Article  CAS  Google Scholar 

  2. Riva S, Yusenko K V., Lavery N P, Jarvis D J, & Brown S G R (2016) The scandium effect in multicomponent alloys. Int. Mater. Rev. 61(3):203–228. https://doi.org/10.1080/09506608.2015.1137692

    Article  CAS  Google Scholar 

  3. Botelho Junior A B, Espinosa D C R, Vaughan J, & Tenório J A S (2021) Recovery of scandium from various sources: A critical review of the state of the art and future prospects. Miner. Eng. 172:107148. https://doi.org/10.1016/j.mineng.2021.107148

  4. Zhang L, Zhang T A, Lv G, Zhang W, Li T, & Cao X (2021) Separation and Extraction of Scandium from Titanium Dioxide Waste Acid. JOM 73(5):1301–1309. https://doi.org/10.1007/s11837-021-04629-7

    Article  CAS  Google Scholar 

  5. Kaya Ş, Dittrich C, Stopic S, & Friedrich B (2017) Concentration and separation of scandium from Ni laterite ore processing streams. Metals (Basel). 7(12):0–6. https://doi.org/10.3390/met7120557

  6. Wang W, Pranolo Y, & Cheng C Y (2011) Metallurgical processes for scandium recovery from various resources: A review. Hydrometallurgy 108(1–2):100–108. https://doi.org/10.1016/j.hydromet.2011.03.001

    Article  CAS  Google Scholar 

  7. Zhao B, Zhang J, & Schreiner B (2016) Separation Hydrometallurgy of Rare Earth Elements. Springer International Publishing AG Switzerland,

    Google Scholar 

  8. Nikolaev A Y, Suzdaltsev A V., & Zaikov Y P (2019) Electrowinning of Aluminum and Scandium from KF-AlF3-Sc2O3 Melts for the Synthesis of Al-Sc Master Alloys. J. Electrochem. Soc. 166(8):D252–D257. https://doi.org/10.1149/2.0231908jes

    Article  CAS  Google Scholar 

  9. Harata M, Yasuda K, Yakushiji H, & Okabe T H (2009) Electrochemical production of Al-Sc alloy in CaCl2-Sc2O3 molten salt. J. Alloys Compd. 474(1–2):124–130. https://doi.org/10.1016/j.jallcom.2008.06.110

    Article  CAS  Google Scholar 

  10. Brinkmann F, Mazurek C, & Friedrich B (2019) Metallothermic Al-Sc co-reduction by vacuum induction melting using Ca. Metals (Basel). 9(11). https://doi.org/10.3390/met9111223

  11. Kulikov B P, Baranov V N, Bezrukikh A I, Deev V B, & Motkov M M (2018) Preparation of Aluminum-Scandium Master Alloys by Aluminothermal Reduction of Scandium Fluoride Extracted from Sc2O3. Metallurgist 61(11–12):1115–1121. https://doi.org/10.1007/s11015-018-0614-1

    Article  CAS  Google Scholar 

  12. Xiao J, Ding W, Peng Y, Chen T, & Zou K (2020) Preparing Sc-bearing master alloy using aluminum–magnesium thermoreduction method. Metals (Basel). 10(7):1–14. https://doi.org/10.3390/met10070960

    Article  CAS  Google Scholar 

  13. Daehn K E, Stinn C, Rush L, Benderly-Kremen E, Wagner M E, Boury C, Chmielowiec B, Gutierrez C, & Allanore A (2022) Liquid Copper and Iron Production from Chalcopyrite, in the Absence of Oxygen. Metals (Basel). 12(9):1440. https://doi.org/10.3390/met12091440

    Article  CAS  Google Scholar 

  14. Stinn C & Allanore A (2022) Selective sulfidation of metal compounds. Nature 602:78–83. https://doi.org/10.1038/s41586-021-04321-5

    Article  CAS  Google Scholar 

  15. Ahmadi E & Suzuki R O (2021) Tantalum Metal Production Through High-Efficiency Electrochemical Reduction of TaS2 in Molten CaCl2. J. Sustain. Metall. 7(2):437–447. https://doi.org/10.1007/s40831-021-00347-1

    Article  Google Scholar 

  16. Diaz C M, Landolt C A, Vahed A, Warner A E M, & Taylor J C (1988) A Review of Nickel Pyrometallurgical Operations. JOM 40(9):28–33. https://doi.org/10.1007/BF03258548

    Article  CAS  Google Scholar 

  17. Stinn C, Toll S, & Allanore A (2022) Aluminothermic Reduction of Sulfides via Reactive Vacuum Distillation. Light Metals 2022. p 681–688

    Google Scholar 

  18. Halmann M, Frei A, & Steinfeld A (2008) Magnesium production by the pidgeon process involving dolomite calcination and MgO silicothermic reduction: Thermodynamic and environmental analyses. Ind. Eng. Chem. Res. 47(7):2146–2154. https://doi.org/10.1021/ie071234v

    Article  CAS  Google Scholar 

  19. Allanore A & Stinn C (2021) Selective Sulfidation and Desulfidation. US2021/0277531A1. 2021

    Google Scholar 

  20. Shevchenko M O, Kudin V G, & Berezutskii V V (2014) Thermodynamic Poerperties of Al-Sc Alloys. Powder Metall. Met. Ceram. 53(3):151–157

    Google Scholar 

  21. Stinn C & Allanore A (2018) Thermodynamic and Structural Study of the Copper-Aluminum System by the Electrochemical Method Using a Copper-Selective Beta″ Alumina Membrane. Metall. Mater. Trans. B 48(6):2922–2929. https://doi.org/10.1007/s11663-018-1400-y

    Article  CAS  Google Scholar 

  22. Obidov Z R, Amonova A V., & Ganiev I N (2013) Effect of scandium doping on the oxidation resistance of Zn5Al and Zn55Al alloys. Russ. J. Phys. Chem. A 87(4):702–703. https://doi.org/10.1134/S0036024413040201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Hiro Higuchi and Sumitomo Metal Mining for graciously providing the sample of scandium oxide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Allanore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stinn, C., Benderly-Kremen, E., Allanore, A. (2023). Scandium Master Alloy Production Via Sulfidation and Vacuum Aluminothermic Reduction. In: Broek, S. (eds) Light Metals 2023. TMS 2023. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-031-22532-1_160

Download citation

Publish with us

Policies and ethics