Skip to main content

Refractive Index and Damping of Gravitational Waves in a Medium

  • Chapter
  • First Online:
Gravitational Waves from a Quantum Field Theory Perspective

Part of the book series: Lecture Notes in Physics ((LNP,volume 1013))

  • 398 Accesses

Abstract

Speed of gravitational waves remains c when it propagates through medium with stress tensor of a perfect fluid. Gravitational waves are absorbed in matter with non-zero shear viscosity. The speed of gravitational waves can differ from c when propagating through in-homogenous scalar field configurations and in modified theories of gravity. Observationally, the damping of gravitational waves and the change in speed of gravity can be probed using multi-messenger signals (γ rays and gravitational waves ) from neutron-star mergers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. Ezquiaga, M. Zumalacárregui, Dark Energy in light of Multi-Messenger Gravitational-Wave astronomy. Front. Astron. Space Sci. 5, 44 (2018). [arXiv:1807.09241 [astro-ph.CO]]

    Google Scholar 

  2. J.B. Jiménez, J.M. Ezquiaga, L. Heisenberg, Probing cosmological fields with gravitational wave oscillations. J. Cosmol. Astropart. Phys. 04, 027 (2020). [arXiv:1912.06104 [astro-ph.CO]]

    Google Scholar 

  3. B.P. Abbott et al. [LIGO Scientific and Virgo Collaborations], GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Phys. Rev. Lett. 119(14), 141101 (2017). [arXiv:1709.09660 [gr-qc]]

    Google Scholar 

  4. B.P. Abbott et al., Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 848(2), L12 (2017). [arXiv:1710.05833 [astro-ph.HE]]

    Google Scholar 

  5. G. Fanizza, M. Gasperini, E. Pavone, L. Tedesco, Linearized propagation equations for metric fluctuations in a general (non-vacuum) background geometry. J. Cosmol. Astropart. Phys. 07, 021 (2021). https://doi.org/10.1088/1475-7516/2021/07/021. [arXiv:2105.13041 [gr-qc]]

  6. S.W. Hawking, Perturbations of an expanding universe. Astrophys. J. 145, 544–554 (1966)

    Article  ADS  Google Scholar 

  7. A.R. Prasanna, Propagation of gravitational waves through a dispersive medium. Phys. Lett. A 257, 120–122 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. J. Madore, The dispersion of gravitational waves. Commun. Math. Phys. 27, 291–302 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  9. G. Goswami, G.K. Chakravarty, S. Mohanty, A.R. Prasanna, Constraints on cosmological viscosity and self interacting dark matter from gravitational wave observations. Phys. Rev. D 95(10), 103509 (2017). [arXiv:1603.02635 [hep-ph]]

    Google Scholar 

  10. G. Baym, S.P. Patil, C.J. Pethick, Phys. Rev. D 96(8), 084033 (2017). https://doi.org/10.1103/PhysRevD.96.084033. [arXiv:1707.05192 [gr-qc]]

  11. R. Flauger, S. Weinberg, Phys. Rev. D 97(12), 123506 (2018). [arXiv:1801.00386 [astro-ph.CO]]

    Google Scholar 

  12. I. Brevik, S. Nojiri, Gravitational waves in the presence of viscosity. Int. J. Mod. Phys. D 28(10), 1950133 (2019). [arXiv:1901.00767 [gr-qc]].

    Google Scholar 

  13. C. Ganguly, J. Quintin, Microphysical manifestations of viscosity and consequences for anisotropies in the very early universe. [arXiv:2109.11701 [gr-qc]]

    Google Scholar 

  14. W. Hu, R. Barkana, A. Gruzinov, Cold and fuzzy dark matter. Phys. Rev. Lett. 85, 1158–1161 (2000). [arXiv:astro-ph/0003365 [astro-ph]]

    Google Scholar 

  15. L. Hui, J.P. Ostriker, S. Tremaine, E. Witten, Ultralight scalars as cosmological dark matter. Phys. Rev. D 95(4), 043541 (2017). [arXiv:1610.08297 [astro-ph.CO]]

    Google Scholar 

  16. B. Abbott et al. [LIGO Scientific and Virgo], GW170817: Observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017)

    Google Scholar 

  17. G.P. Lamb, S. Kobayashi, GRB 170817A as a jet counterpart to gravitational wave triggerGW 170817. Mon. Not. Roy. Astron. Soc. 478(1), 733–740 (2018)

    Article  ADS  Google Scholar 

  18. S. Jana, G.K. Chakravarty, S. Mohanty, Constraints on Born-Infeld gravity from the speed of gravitational waves after GW170817 and GRB 170817A. Phys. Rev. D 97(8), 084011 (2018). [arXiv:1711.04137 [gr-qc]]

    Google Scholar 

  19. M. Banados, P.G. Ferreira, Eddington’s theory of gravity and its progeny. Phys. Rev. Lett. 105, 011101 (2010). [arXiv:1006.1769 [astro-ph.CO]]

    Google Scholar 

  20. C. Escamilla-Rivera, M. Banados, P.G. Ferreira, A tensor instability in the Eddington inspired Born-Infeld Theory of Gravity. Phys. Rev. D 85, 087302 (2012). https://doi.org/10.1103/PhysRevD.85.087302. [arXiv:1204.1691 [gr-qc]]

  21. J. Beltran Jimenez, L. Heisenberg, G.J. Olmo, D. Rubiera-Garcia, On gravitational waves in Born-Infeld inspired non-singular cosmologies. J. Cosmol. Astropart. Phys. 10, 029 (2017). [erratum: JCAP 08, E01 (2018)]. [arXiv:1707.08953 [hep-th]]

    Google Scholar 

  22. T. Kobayashi, Horndeski theory and beyond: a review. Rep. Prog. Phys. 82(8), 086901 (2019). https://doi.org/10.1088/1361-6633/ab2429. [arXiv:1901.07183 [gr-qc]]

  23. M. Pardy, The gravitational Cerenkov radiation with radiative corrections. Phys. Lett. B336, 362–367 (1994)

    Article  ADS  Google Scholar 

  24. G.D. Moore, A.E. Nelson, Lower bound on the propagation speed of gravity from gravitational Cherenkov radiation. J. High Energy Phys. 09, 023 (2001). [arXiv:hep-ph/0106220 [hep-ph]]

    Google Scholar 

  25. J.W. Elliott, G.D. Moore, H. Stoica, Constraining the new Aether: Gravitational Cerenkov radiation. J. High Energy Phys. 08, 066 (2005). [arXiv:hep-ph/0505211 [hep-ph]]

    Google Scholar 

  26. R. Kimura, K. Yamamoto, Constraints on general second-order scalar-tensor models from gravitational Cherenkov radiation. J. Cosmol. Astropart. Phys. 07, 050 (2012). [arXiv:1112.4284 [astro-ph.CO]]

    Google Scholar 

  27. M. De Laurentis, S. Capozziello, G. Basini, Gravitational Cherenkov Radiation from Extended Theories of Gravity. Mod. Phys. Lett. A 27, 1250136 (2012). [arXiv:1206.6681 [gr-qc]]

    Google Scholar 

  28. V.A. Kostelecký, J.D. Tasson, Constraints on Lorentz violation from gravitational Čerenkov radiation. Phys. Lett. B 749, 551–559 (2015). [arXiv:1508.07007 [gr-qc]]

    Google Scholar 

  29. R. Flauger, S. Weinberg, Absorption of gravitational waves from distant sources. Phys. Rev. D 99(12), 123030 (2019). [arXiv:1906.04853 [hep-th]]

    Google Scholar 

  30. D. Baumann, H.S. Chia, J. Stout, L. ter Haar, The spectra of gravitational atoms. J. Cosmol. Astropart. Phys. 12, 006 (2019). https://doi.org/10.1088/1475-7516/2019/12/006. [arXiv:1908.10370 [gr-qc]]

  31. W. Hu, R. Barkana, A. Gruzinov, Cold and fuzzy dark matter. Phys. Rev. Lett. 85, 1158 (2000). [astro-ph/0003365]

    Google Scholar 

  32. L. Hui, J.P. Ostriker, S. Tremaine, E. Witten, Phys. Rev. D 95(4), 043541 (2017). [arXiv:1610.08297 [astro-ph.CO]]

    Google Scholar 

  33. A. Palessandro, M.S. Sloth, Gravitational absorption lines. Phys. Rev. D 101(4), 043504 (2020). [arXiv:1910.01657 [hep-th]]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohanty, S. (2023). Refractive Index and Damping of Gravitational Waves in a Medium. In: Gravitational Waves from a Quantum Field Theory Perspective. Lecture Notes in Physics, vol 1013. Springer, Cham. https://doi.org/10.1007/978-3-031-23770-6_9

Download citation

Publish with us

Policies and ethics