Skip to main content

Linearization for Difference Equations with Infinite Delay

  • Conference paper
  • First Online:
Advances in Discrete Dynamical Systems, Difference Equations and Applications (ICDEA 2021)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 416))

Included in the following conference series:

  • 274 Accesses

Abstract

In this article, we construct a conjugacy map for a linear difference equation with infinite delay and corresponding nonlinear perturbation. We also prove that the conjugacy map is one-to-one with some additional conditions. As an application of our result, we show that the cases of (uniform) exponential dichotomy follow from our result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murakami, S.: Representation of solutions of linear functional difference equations in phase space. Nonlinear Anal. 30, 1153–1164 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dragičević, D., Pituk, M.: Shadowing for nonautonomous difference equations with infinite delay. Appl. Math. Lett. 120, 107284 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Pugh, C.: On a Theorem of P. Hartman. Am. J. Math. 91(2), 363–367 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  4. Palis, J.: On the local structure of hyperbolic points in Banach spaces. An. Acad. Brasil. Cienc. 40, 263–266 (1968)

    MathSciNet  MATH  Google Scholar 

  5. Hartman, P.: On the local linearization of differential equations. Proc. Am. Math. Soc. 14, 568–573 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  6. Grobman, D.: Homeomorphism of systems of differential equations. Dokl. Akad. Nauk SSSR 128, 880–881 (1959)

    MathSciNet  MATH  Google Scholar 

  7. Reinfelds, A.: A generalized theorem of Grobman and Hartman. Latv. Mat. Ezhegodnik 29, 84–88 (1985)

    MATH  Google Scholar 

  8. Bates, W., Lu, K.: A Hartman-Grobman theorem for the Cahn-Hilliard and phase-field equations. J. Dynam. Differ. Equ. 6(1), 101–145 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Belitskii, G.R.: Functional equations and the conjugacy of difeomorphism of finite smoothness class. Funct. Anal. Appl. 7, 268–277 (1973)

    Article  Google Scholar 

  10. Belitskii, G.R.: Equivalence and normal forms of germs of smooth mappings. Russian Math. Surv. 33, 107–177 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sternbger, S.: Local contractions and a theorem of Poincare. Am. J. Math. 79, 809–824 (1957)

    Article  MathSciNet  Google Scholar 

  12. ElBialy, M.S.: Smooth conjugacy and linearization near resonant fixed points in Hilbert spaces. Houston J. Math. 40, 467–509 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Rodrigues, H.M., Solà-Morales, J.: Invertible contractions and asymptotically stable ODEs that are not C1-linearizable. J. Dyn. Difer. Equ. 18, 961–974 (2006)

    Google Scholar 

  14. Palmer, K.: A generalization of Hartmans linearization theorem. J. Math. Anal. Appl. 41, 753–758 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Aulbach, B., Wanner, T.: Topological simplifcation of nonautonomous diference equations. J. Differ. Equ. Appl. 12, 283–296 (2006)

    Article  MATH  Google Scholar 

  16. Barreira, L., Valls, C.: A Grobman-Hartman theorem for nonuniformly hyperbolic dynamics. J. Differ. Equ. 228, 285–310 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shi, J.L., Xiong, K.Q.: On Hartmans linearization theorem and Palmers linearization theorem. J. Math. Anal. Appl. 192, 813–832 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dragičević, D., Zhang, W., Zhang, W.: Smooth linearization of nonautonomous diference equations with a nonuniform dichotomy. Math. Z. 292, 1175–1193 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dragičević, D., Zhang, W., Zhang, W.: Smooth linearization of nonautonomous diferential equations with a nonuniform dichotomy. Proc. Lond. Math. Soc. 121, 32–50 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Backes, L., Dragičević, D.: A generalized Grobman-Hartman theorem for nonautonomous dynamics. Collect, Math (2021)

    MATH  Google Scholar 

  21. Barreira, L., Dragičević, D., Valls, C.: Existence of conjugacies and stable manifold theorem via suspensions. Elec. J. Differ. Equ. 2017(172), 1–11 (2017)

    MATH  Google Scholar 

  22. Farkas, G.: A Hartman-Grobman result for retarded functional differential equations with an application to the numerics around hyperbolic equilibria. Z. Angew. Math. Phys. 52, 421–432 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Barreira, L., Valls, C.: Perturbations of delay equations. J. Differ. Equ. 269, 7015–7041 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Benkhalti, R., Ezzinbi, K.: A Hartman and Grobman theorem for some partial functional differential equations. Int. J. Bif. and Cha. 10(5), 1165–1169 (2000)

    Google Scholar 

  25. Sternberg, N.: A Hartman-Grobman theorem for a class of retarded functional differential equations. J. Math. Anal. Appl. 176, 156–165 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sternberg, N.: A Hartman-Grobman theorem for maps. In: Ordinary and Delay Differential Equations, Edinburg, TX, 1991, in: Pitman Res. Notes Math. Ser., vol. 272, Longman Sci. Tech., Harlow, pp. 223–227 (1992)

    Google Scholar 

  27. Dragičević, D.: Global smooth linearization of nonautonomous contractions on Banach spaces. Electron. J. Qual. Theory Differ. Equ., Paper No. 12, pp. 1–19 (2022)

    Google Scholar 

  28. Castañeda, A., Robledo, G.: Differentiability of Palmer’s linearization theorem and converse result for density function. J. Differ. Equ. 259, 4634–4650 (2015)

    Google Scholar 

  29. Zhang, W.M., Zhang, W.N.: C1 linearization for planar contractions. J. Funct. Anal. 260(7), 2043–2063 (2011)

    Google Scholar 

  30. Zhang, W.M., Zhang, W.N.: Sharpness for C1 linearization of planar hyperbolic diffeomorphisms. J. Differ. Equ. 257, 4470–4502 (2014)

    Article  MATH  Google Scholar 

  31. Zhang, W.M., Lu, K., Zhang, W.N.: Differentiability of the conjugacy in the Hartman-Grobman Theorem. Trans. Am. Math. Soc. 369, 4995–5030 (2017)

    Google Scholar 

Download references

Acknowledgements

Author would like to thanks Prof. D. Dragičević for his valuable suggestions throughout the process of solving and writing this article. The Author is supported by Croatian Science Foundation under the project IP-2019-04-1239.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokesh Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, L. (2023). Linearization for Difference Equations with Infinite Delay. In: Elaydi, S., Kulenović, M.R.S., Kalabušić, S. (eds) Advances in Discrete Dynamical Systems, Difference Equations and Applications. ICDEA 2021. Springer Proceedings in Mathematics & Statistics, vol 416. Springer, Cham. https://doi.org/10.1007/978-3-031-25225-9_21

Download citation

Publish with us

Policies and ethics