Skip to main content

Abstract

The article suggests a fuzzy approach to safe navigation when changing lanes in a road scenario. The approach is to create a module for making informed decisions during lane changes by several agents in order to avoid collisions. The price libraries used in this model help to make decisions when changing lanes. The article describes two modules two fuzzy modules, a fuzzy target control module, and a fuzzy collision avoidance control module are designed to perform these two tasks.

As a result, with the help of dynamic fuzzy clustering methods, adaptive driving of an unmanned vehicle (DUV) management is supported, which allows for minimizing the risks of road accidents (accidents involving DUV) and maximizing traffic (total output flow) in conditions of intense traffic flow.

In the article, the simulation of a robot car moving along the lane and changing the lane of the Road is implemented in the Matlab environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliev, R.A., Fazlollahi, B., Aliev, R.R.: Soft Computing and its Applications in Business and Economics. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-44429-9

    Book  MATH  Google Scholar 

  2. Naranjo, J.E., González, C., García, R., de Pedro, T.: Lane-change fuzzy control in autonomous vehicles for the overtaking maneuver. IEEE Trans. Intell. Transp. Syst. 9, 438–450 (2008)

    Article  Google Scholar 

  3. Bentalba, S., El Hajjaji A., Rachid A.: Fuzzy parking and point stabilization: application car dynamics model. In: 5th IEEE Mediterranean Conference on Control and Systems (1997)

    Google Scholar 

  4. Frese, C.; Beyerer, J.: A comparison of motion planning algorithms for cooperative collision avoidance of multiple cognitive automobiles. In: Proceedings of the 2011 IEEE Intelligent Vehicles Symposium, Baden-Baden, Germany, pp. 1156–1162 (2011)

    Google Scholar 

  5. Wei, J., Snider, J.M., Kim, J., Dolan, J.M., Rajkumar, R., Litkouhi, B.: Towards a viable autonomous driving research platform. In: IEEE Intelligent Vehicles Symposium (IV), pp. 763–770. IEEE (2013)

    Google Scholar 

  6. Kuwata, Y., Karaman, S., Teo, J., Frazzoli, E., How, J.P., Fiore, G.: Real-time motion planning with applications to autonomous urban driving. IEEE Trans. Control Syst. Technol. 17, 1105–1118 (2009)

    Article  Google Scholar 

  7. Anderson, S.J.; Karumanchi, S.B.; Iagnemma, K. Constraint-based planning and control for safe, semi-autonomous operation of vehicles. In: Proceedings of the 2012 IEEE Intelligent Vehicles Symposium, Madrid, Spain, pp. 383–388 (2012)

    Google Scholar 

  8. Pandey, A., Sonkar, R.K., Pandey, K.K., Parhi, D.R.: Path planning navigation of mobile robot with obstacles avoidance using fuzzy logic controller. In: Intelligent Systems and Control (ISCO) (2014). https://doi.org/10.1109/ISCO.2014.7103914

  9. Katrakazas, C., Quddus, M., Chen, W.-H., Deka, L.: Real-time motion planning methods for autonomous on-road driving: state-of-the-art and future research directions. Transp. Res. Part C Emerg. Technol. 60, 416–442 (2015). https://doi.org/10.1016/j.trc.2015.09.011

    Article  Google Scholar 

  10. Ahmadov, S.A., Gardashova, L.A.: Fuzzy dynamic programming approach to multistage control of flash evaporator system. In: Aliev, R.A., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Babanli, M.B., Sadikoglu, F.M. (eds.) ICSCCW 2019. AISC, vol. 1095, pp. 101–105. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35249-3_12

    Chapter  Google Scholar 

  11. Gardashova, L.A., Ilhan, U., Kilic, K.: UAV using Dec-POMDP model for increasing the level of security in the company. Procedia Comput. Sci. 102, 458–464 (2016). https://doi.org/10.1016/j.procs.2016.09.427

    Article  Google Scholar 

  12. Huseynov, O.H., Adilova, N.E.: Multi-criterial optimization problem for fuzzy if-then rules. In: Aliev, R.A., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Babanli, M., Sadikoglu, F.M. (eds.) ICAFS 2020. AISC, vol. 1306, pp. 80–88. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64058-3_10

    Chapter  Google Scholar 

  13. Zadeh, L.A., Aliev, R.A.: Fuzzy Logic Theory and Applications. Part I and Part II, 610 p. World Scintific, Singapore (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Sultanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sultanova, A.B. (2023). Fuzzy Logic-Based Planning of the Behavior of Autonomous Vehicles. In: Aliev, R.A., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Babanli, M.B., Sadikoglu, F. (eds) 15th International Conference on Applications of Fuzzy Systems, Soft Computing and Artificial Intelligence Tools – ICAFS-2022. ICAFS 2022. Lecture Notes in Networks and Systems, vol 610. Springer, Cham. https://doi.org/10.1007/978-3-031-25252-5_75

Download citation

Publish with us

Policies and ethics