Skip to main content

A Real-Time Semantic Anomaly Labeler Capturing Local Data Stream Features to Distinguish Anomaly Types in Production

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13810))

Abstract

The digitalization entails a significant increase of information that can be used for decision-making in many business areas. In production, the proliferation of smart sensor technology leads to the real-time availability of manifold information from entire production environments. Due to the digitalization, many decision processes are automated. However, humans are supposed to remain at the center of decision-making to steer production. One central area of decision-making in digitalized production is real-time anomaly detection. Current implementations mainly focus on finding anomalies in sensor data streams. This research goes a step further by presenting design, prototypical implementation and evaluation of a real-time semantic anomaly labeler. The core functionality is to provide semantic annotations for anomalies to enable humans to make more informed decisions in real-time. The resulting implementation is flexibly applicable as it uses local data features to distinguish kinds of anomalies that receive different labels. Demonstration and evaluation show that the resulting implementation is capable of reliably labelling anomalies of different kinds from production processes in real-time with high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbariol, T., Feltresi, E., Susto, G.A.: Self-diagnosis of multiphase flow meters through machine learning-based anomaly detection. Energies 13(12), 3136 (2020)

    Article  Google Scholar 

  2. Beierle, C. and Kern-Isberner, G. 2019. Methoden wissensbasierter Systeme. Springer Fachmedien Wiesbaden, Wiesbaden

    Google Scholar 

  3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection. ACM Comput. Surv. 41(3), 1–58 (2009)

    Article  Google Scholar 

  4. Dunia, R., Qin, S.J., Edgar, T.F., McAvoy, T.J.: Identification of faulty sensors using principal component analysis. AIChE J. 42(10), 2797–2812 (1996)

    Article  Google Scholar 

  5. Hoßfeld, S.: Optimization on decision making driven by digitalization. JEW 5, 2 (2017)

    Google Scholar 

  6. Jin, X., Chow, T.W.S., Tsui, K.-L.: Online anomaly detection of brushless DC motor using current monitoring technique. Int. J. Performab. Eng. 10, 263 (2014)

    Google Scholar 

  7. Kagermann, H., Wahlster, W., Helbig, J.: Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0. Abschlussbericht des Arbeitskreises Industrie 4.0 (2013)

    Google Scholar 

  8. Kolozali, S., Bermudez-Edo, M., Barnaghi, P.: Stream Annotation Ontology (2016). http://iot.ee.surrey.ac.uk/citypulse/ontologies/sao/sao

  9. Kolozali, S., Bermudez-Edo, M., Puschmann, D., Ganz, F., Barnaghi, P.: A knowledge-based approach for real-time IoT data stream annotation and processing. In: 2014 IEEE International Conference on Internet of Things(iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom), pp. 215–222. IEEE (2014). https://doi.org/10.1109/iThings.2014.39

  10. Lavin, A., Ahmad, S.: Evaluating Real-Time Anomaly Detection Algorithms - The Numenta Anomaly Benchmark, pp. 38–44 (2015)

    Google Scholar 

  11. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24(3), 45–77 (2007)

    Article  Google Scholar 

  13. Rousopoulou, V., Nizamis, A., Vafeiadis, T., Ioannidis, D., Tzovaras, D.: Predictive maintenance for injection molding machines enabled by cognitive analytics for industry 4.0. Front. Artif. Intell. 3, 578152 (2020)

    Google Scholar 

  14. Schütze, A., Helwig, N., Schneider, T.: Sensors 4.0 – smart sensors and measurement technology enable Industry 4.0. J. Sens. Sensor Syst. 7(1), 359–371 (2018)

    Google Scholar 

  15. Stahmann, P., Rieger, B.: Requirements identification for real-time anomaly detection in industrie 4.0 machine groups: a structured literature review. In: Proceedings of the 54th Hawaii International Conference on System Sciences (2021)

    Google Scholar 

  16. Stojanovic, L., Dinic, M., Stojanovic, N., Stonjanovic, A.: Big-data- driven Anomaly Detection in Industry (4.0): an approach and a case study. In: IEEE (2016)

    Google Scholar 

  17. Sun, J., Kamiya, M., Takeuchi, S.: Introducing hierarchical clustering with real time stream reasoning into semantic-enabled IoT. In: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), pp. 540–545. IEEE (2018). https://doi.org/10.1109/COMPSAC.2018.10291

  18. Venable, J., PriesHeje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25(1), 77–89 (2016)

    Article  Google Scholar 

  19. Vilariño, F., Spyridonos, P., Vitrià, J., Radeva, P.: Experiments with SVM and stratified sampling with an imbalanced problem: detection of intestinal contractions. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) Pattern Recognition and Image Analysis. LNCS, vol. 3687, pp. 783–791. Springer, Heidelberg (2005). https://doi.org/10.1007/11552499_86

    Chapter  Google Scholar 

  20. vom Brocke, J., Simons, A., Riemer, K., Niehaves, B., Plattfaut, R., Cleven, A.: Standing on the shoulders of giants: challenges and recommendations of literature search in information systems research. Commun. Assoc. Inf. Syst. 37, 1–9 (2015). https://doi.org/10.17705/1CAIS.03709

    Article  Google Scholar 

  21. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. MIS Q. 26(2), xiii–xxiii (2002)

    Google Scholar 

  22. Xie, L., et al.: Soft sensors for online steam quality measurements of OTSGs. J. Process Control 23(7), 990–1000 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Stahmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stahmann, P., Nebel, M., Rieger, B. (2023). A Real-Time Semantic Anomaly Labeler Capturing Local Data Stream Features to Distinguish Anomaly Types in Production. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13810. Springer, Cham. https://doi.org/10.1007/978-3-031-25599-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25599-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25598-4

  • Online ISBN: 978-3-031-25599-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics