Skip to main content

Buckling of Elastic Plates

  • Chapter
  • First Online:
Lecture Notes on the Theory of Plates and Shells

Abstract

The classical theory of plate buckling is shown here to emerge from our dimension reduction procedure applied to incremental elasticity theory, concerned with the linearized theory or small deformations superposed upon large. Plate buckling theory emerges as the leading-order-in-thickness model when the underlying pre-stress scales appropriately with respect to thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cox, H.L.: The Buckling of Plates and Shells. Pergamon-McMillan, New York (1963)

    MATH  Google Scholar 

  2. Fichera, G.: Existence Theorems in Elasticity. In: Flügge, W. (ed.) Handbuch der Physik, vol. VIa/2, pp. 347–389. Springer, Berlin (1972)

    Google Scholar 

  3. Fu, Y.B.: Perturbation Methods and Nonlinear Stability Analysis. In: Fu, Y.B., Ogden, R.W. (ed.) Nonlinear Elasticity, Theory and Applications. London Mathematical Society Lecture Note Series, vol. 283. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  4. Green, A.E., Zerna, W.: Theoretical Elasticity, 2nd edn. Oxford University Press, Oxford (1968)

    MATH  Google Scholar 

  5. van der Heijden, A.M.A.: W. T. Koiter’s Elastic Stability of Solids and Structures. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  6. Hilgers, M.G., Pipkin, A.C.: The Graves condition for variational problems of arbitrary order. IMA. J. Appl. Math. 48, 265–269 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hill, R.: On uniqueness and stability in the theory of finite elastic strain. J. Mech. Phys. Solids 5, 229–241 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  8. Koiter, W.T.: A Basic Open Problem in the Theory of Elastic Stability. In: Joint IUTAM/IMU Symposium on Applications of Methods of Functional Analysis to Problems in Mechanics, 1–6, Part XXIX, Marseille, 1975. Springer, Berlin, Heidelberg (1975)

    Google Scholar 

  9. Knops, R.J., Wilkes, E.W.: Theory of Elastic Stability. In: Flügge, W. (ed.) Handbuch der Physik, vol. VIa/3, pp. 125–302. Springer, Berlin (1973)

    Google Scholar 

  10. Ogden, R.W.: Non-linear Elastic Deformations. Dover, New York (1997)

    Google Scholar 

  11. Ogden, R.W., Singh, B.: Propagation of waves in an incompressible transversely isotropic solid with initial stress: Biot revisited. J. Mech. Mater. Struct. 6, 453–477 (2011)

    Article  Google Scholar 

  12. Paroni, P.: Theory of linearly elastic residually stressed plates. Math. Mech. Solids 11, 137–159 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shield, R.T.: The rotation associated with large strain. SIAM J. Appl. Math. 25, 483–491 (1973)

    Article  MATH  Google Scholar 

  14. Steigmann, D.J.: Two-dimensional models for the combined bending and stretching of plates and shells based on three-dimensional linear elasticity. Int. J. Eng. Sci. 46, 654–676 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Steigmann, D.J.: Linear theory for the bending and extension of a thin, residually stressed, fiber-reinforced lamina. Int. J. Eng. Sci. 47, 1367–1378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Steigmann, D.: Applications of polyconvexity and strong ellipticity to nonlinear elasticity and elastic plate theory. In: Schröder, J., Neff, P. (eds.) Poly-, Quasi-, and Rank-One Convexity in Applied Mechanics. CISM Courses and Lectures, vol. 516, pp. 265–299. Springer, Wien and New York (2010)

    Chapter  Google Scholar 

  17. Steigmann, D.J.: Refined theory for linearly elastic plates: laminae and laminates. Math. Mech. Solids 17, 351–363 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Steigmann, D.J., Ogden, R.W.: Classical plate buckling theory as the small-thickness limit of three-dimensional incremental elasticity. Z. Angew. Math. Mech. (ZAMM) 94, 7–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Bîrsan .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steigmann, D.J., Bîrsan, M., Shirani, M. (2023). Buckling of Elastic Plates. In: Lecture Notes on the Theory of Plates and Shells. Solid Mechanics and Its Applications, vol 274. Springer, Cham. https://doi.org/10.1007/978-3-031-25674-5_7

Download citation

Publish with us

Policies and ethics