Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 425))

  • 117 Accesses

Abstract

Segmentation is an essential task in image analysis process. Due to non-homogeneous intensities, blurred boundaries, noise and minimum of contrast it is a challenging task for image analysists. It has wide range of applications in all fields exclusively in the field medical imaging for disease deionization and early detection. The root cause for non-homogeneous intensities is uncertainty. Various tools have been introduced to handle uncertainty. We have introduced type-2 fuzzy based image segmentation process for edge detection in blurred areas of an image. When compared with classical fuzzy set, it has upper and lower membership values. Since it has more membership values it can handle higher level of uncertainty. In this chapter we have proposed equivalence function associated with strong negation relation which will address each intensity \({\mathcal{I}}_{t}\) of an image \(\mathcal{I}\) through the membership values. This method is verified with thermographic breast cancer image data set and the results were satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benchara, F.Z., Youssfi, M.: A new distributed type-2 fuzzy logic method for efficient data science models of medical informatics. Adv. Fuzzy Syst. (2020). https://doi.org/10.1155/2020/6539123

  2. Bottema, M.J., Slavotinek, J.P.: Detection and classification of lobular and DCIs microcalcifications in digital mammograms. Pattern Recogn. Lett. 24, 1209–1214 (2000)

    Article  MATH  Google Scholar 

  3. Castillo, O., Sanchez, M.A., Gonzalez, C.I., Martinez, G.E.: Review of recent Type-2 fuzzy image processing applications. Information 8(97), 1–18 (2017)

    Google Scholar 

  4. Castillo, O., Melin, P., Castro, J.R.: Computational Intelligence Software for Interval Type-2 Fuzzy Logic. Proceedings of the 2008 Workshop on Building Computational Intelligence and Machine Learning Virtual Organizations, pp. 9–29 (2008)

    Google Scholar 

  5. Chouhan, S.S., Kaul, A., Singh, U.P.: Soft computing approaches for image segmentation-a survey. Multimed Tools Appl. 77, 28483–28537 (2018)

    Article  Google Scholar 

  6. Dawoud, A.: Segmentation of Dermoscopic images by the fusion of Type-2 fuzziness measure in graph cuts image Binarization. Int. J. Imaging Robot 2(15), 73–87 (2015)

    Google Scholar 

  7. Devi, M., Singh, S., Tiwari, S., Patel, S.C., Ayana, M.T.: A survey of soft computing approaches in biomedical imaging. Hindawi J. Healthcare Eng. 21, 2040–2295 (2021)

    Google Scholar 

  8. Ensafi, P., H.R., Tizhoosh, R.: Type-2 Fuzzy Image Enhancement. Springer, Berlin, Heidelberg, LNCS 3656, pp. 159–166 (2005)

    Google Scholar 

  9. Gonzalez, C.I., Melin, P., Castillo, O.: Edge detection method based on general Type-2 fuzzy logic applied to colour images. Information 8(104), https://doi.org/10.3390/info8030104 (2017)

  10. Hagras, H.A.: A Hierarchical Type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12, 524–539 (2004)

    Article  Google Scholar 

  11. Idris, N.F., Ismail, M.A.: Breast cancer disease classification using fuzzy-ID3 algorithm with FUZZYDBD method: automatic fuzzy database definition. Peer J. Comput. Sci., e427 (2021). https://doi.org/10.7717/peerj-cs.427

  12. Jafar, T., Chunwei, Z., Ardashir, M.Z., Saleh, M., Mosavi Amir, H.: Medical image interpolation using recurrent Type-2 Fuzzy neural network. Front. Neuro-Inf. 15(75) (2021)

    Google Scholar 

  13. Krinidis, S., Chatzis, V.: Fuzzy Energy-based active contours. Trans. Image Process. 18, 2747–2755 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mendel, J.M.: Uncertainty, fuzzy logic, and signal processing. Signal Process 80, 913–933 (2000)

    Article  MATH  Google Scholar 

  15. Mendel, J.M.: Type-2 Fuzzy Sets and Systems—A Retrospective, pp. 523–532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/s00287-015-0927-4 (2015)

  16. Mendel, J.M., Bob John, R.I.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)

    Google Scholar 

  17. Mijares, S.T., Woo, F., Flores, F.: Breast cancer identification via thermography image segmentation with a gradient vector flow and a convolutional neural network. J. Healthcare Eng. 98(19). https://doi.org/10.1155/2019/980619 (2019)

  18. Murugeswari, P., Vijayalakshmi, S.: New method of Interval type-2 fuzzy-based CNN for image classification. Int. J. Fuzzy Logic Intell. Syst. 20, 336–345 (2020)

    Article  Google Scholar 

  19. Nguyen, D.D., Ngo, L.T., Watada, J.: A genetic type-2 fuzzy C-means clustering approach to M-FISH segmentation. J. Intell. Fuzzy Syst. 27, 3111–3122 (2014)

    Article  MathSciNet  Google Scholar 

  20. Palanivel, M., Duraisamy, M.: Adaptive color texture image segmentation using α-cut implemented interval Type-2 Fuzzy C-Means. Res. J. Appl. Sci. 7, 258–265 (2012)

    Article  Google Scholar 

  21. Palanivel, M., Duraisamy, M.: Color textured image segmentation using ICICM-Interval Type-2 Fuzzy C-Means clustering hybrid approach. Eng. J. 16(5), 115–126 (2012)

    Google Scholar 

  22. Pereira, C.L., Bastos, C.A.C.M.: Tsang Ing Ren & George D.C. Cavalcanti: fuzzy active contour models. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), pp. 1621–1627 (2011)

    Google Scholar 

  23. Shan, J., Cheng, H.D., Wang, Y.: Completely automated segmentation approach for breast ultrasound images using multiple-domain features. Ultrasound Med. Biol. 38(2), 262–275 (2012)

    Google Scholar 

  24. Shikkenawis, G., Mitra, S.K.: Image denoising using 2D orthogonal locality preserving discriminant projection. J. IET Image Process. 14(3), 554–560 (2019)

    Google Scholar 

  25. Silva, L.F., Saade, D.C.M., Sequeiros, G.O.: A new database for breast research with infrared image. J. Med. Imaging Health Inf. 4(1), 92–100 (2014)

    Article  Google Scholar 

  26. Xian, M., Zhang, Y., Cheng, H.D.: Fully automatic segmentation of breast ultrasound images based on breast characteristics in space and frequency domains. Pattern Recogn. 48(2), 485–497 (2015)

    Article  Google Scholar 

  27. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Anitha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anitha, K., Datta, D. (2023). Type-2 Fuzzy Set Approach to Image Analysis. In: Castillo, O., Kumar, A. (eds) Recent Trends on Type-2 Fuzzy Logic Systems: Theory, Methodology and Applications. Studies in Fuzziness and Soft Computing, vol 425. Springer, Cham. https://doi.org/10.1007/978-3-031-26332-3_12

Download citation

Publish with us

Policies and ethics