Skip to main content

Light-Triggered Solid-State Circuit Breaker for DC Electrical Systems

  • Chapter
  • First Online:
Direct Current Fault Protection

Abstract

This chapter describes the design, simulation, fabrication, and characterization of a solid-state DC circuit breaker based on a normally-off, light-triggered, gallium nitride photoconductive switch combined with a cascaded, normally-on, silicon carbide junction field-effect transistor circuit leg. This design provides a very fast response time to fault events. Simulations of the various parts of the breaker and their predicted behavior in system designs have guided a first hardware demonstration. Circuit breaker voltage and current timing diagrams illustrate the interplay between different parts of the breaker and the sensitivity of the timing. The experimental performance closely matches the predicted behavior, allowing voltage and current scaling for future designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Giannakis, D. Peftitsis, MVDC distribution grids and potential applications: Future trends and protection challenges, in 20th European Conf. Power Elec. Apps, (2018) P.1–P.9

    Google Scholar 

  2. J. Pan, et al., Medium Voltage Direct Current (MVDC) grid feasibility study, Cigre Technical Brochure TB793 WG C6.31 (2020, April) https://electra.cigre.org/309-april-2020/technical-brochures/medium-voltage-direct-current-mvdc-grid-feasibility-study.html

  3. U.S Energy Information Administration, Annual Energy Outlook (2015, April). http://www.eia.gov/forecasts/aeo/electricity_generation.cfm

  4. D. Chung, et.al, US photovoltaic prices and cost breakdowns: Q1 2015 benchmarks for residential, commercial and utility-scale systems; an NREL Technical Report, NREL/TP-6A20-64746, September 2015. http://www.nrel.gov/docs/fy15osti/64746.pdf

  5. R. Borstlap, H.T. Katen, Ships’ Electrical Systems (Enkhuizen, 2011)

    Google Scholar 

  6. Z. Jin, G. Sulligoi, R. Cuzner, L. Meng, J.C. Vasquez, J.M. Guerrero, Next-generation shipboard DC power system: Introduction smart grid and DC microgrid technologies into maritime electrical networks. IEEE Elec. Mag. 4(2), 45–57 (2016). https://doi.org/10.1109/MELE.2016.2544203

    Article  Google Scholar 

  7. D. He, Z. Shuai, Z. Lei, W. Wang, X. Yang, Z.J. Shen, A SiC JFET based solid state circuit breaker with digitally controlled current-time profiles. IEEE J. Emerg. Sel. Topics Power Elec. 7(3), 1556–1565 (2019)

    Article  Google Scholar 

  8. L.F.S. Alves, V.-S. Nguyen, P. Lefranc, J.-C. Crebier, P.O. Jeannin, B. Sarrazin, A cascaded gate driver architecture to increase the switching speed of power devices in series connection. IEEE J. Emerg. Sel. Topics Power Elec. 9(2), 2285–2294 (2021)

    Article  Google Scholar 

  9. A. Marzoughi, R. Burgos, D. Boroyevich, Active gate-driver with dv/dt controller for dynamic voltage balancing in series-connected SiC MOSFETs. IEEE Trans. Ind. Elec. 66(4), 2488–2498 (2019)

    Article  Google Scholar 

  10. F. Zhang, X. Yang, W. Chen, L. Wang, Voltage balancing control of series-connected SiC MOSFETs by using energy recovery Snubber circuits. IEEE Trans. Power Elec. 35(10), 10200–10212 (2020)

    Article  Google Scholar 

  11. L. Pang, T. Long, K. He, Y. Huang, Q. Zhang, A compact series-connected SiC MOSFETs module and its application in high voltage nanosecond pulse generator. IEEE Trans. Ind. Elec. 66(12), 9238–9247 (2019)

    Article  Google Scholar 

  12. United SiC, 35mΩ - 1200V SiC Normally-On JFET, UJ3N120035K3S datasheet (2018, Dec)

    Google Scholar 

  13. G.M. Loubriel et al., Photoconductive semiconductor switches. IEEE Trans. Plasma. Sci. 25(2), 124–130 (1997). https://doi.org/10.1109/27.602482

    Article  Google Scholar 

  14. D. Mauch, W. Sullivan, A. Bullick, A. Neuber, J. Dickens, High power lateral silicon carbide photoconductive semiconductor switches and investigation of degradation mechanisms. IEEE Trans. Plasma. Sci. 43(6), 2021–2031 (2015). https://doi.org/10.1109/TPS.2015.2424154

    Article  Google Scholar 

  15. E.A. Hirsch et al., High-gain persistent nonlinear conductivity in high-voltage gallium nitride photoconductive switches, in IEEE Int. Power Mod. High Voltage Conf, (2018), pp. 45–50. https://doi.org/10.1109/IPMHVC.2018.8936660

    Chapter  Google Scholar 

  16. W.V. Muench, E. Pettenpaul, Saturated electron drift velocity in 6H silicon carbide. J. Appl. Phys. 48, 4823–4825 (1977). https://doi.org/10.1063/1.323506

    Article  Google Scholar 

  17. K. Park, M.A. Stroscio, C. Bayram, Investigation of electron mobility and saturation velocity limits in gallium nitride using uniaxial dielectric continuum model. J. Appl. Phys. 121, 245109 (2017). https://doi.org/10.1063/1.4990424

    Article  Google Scholar 

  18. P.A. Schultz, A.H. Edwards, R.M. Van Ginhoven, H.P. Hjalmarson, A.M. Mounce, Theory of Magnetic 3d Transition Metal Dopants in Cubic Gallium Nitride (to be published)

    Google Scholar 

  19. L.W. Nagel, D.O. Pederson, SPICE (Simulation Program with Integrated Circuit Emphasis) (University of California, Berkeley, 1973). http://scholar.google.com/scholar?q=related:oNvmRO8kZpgJ:scholar.google.com/hl=ennum=30as_sdt=0,5

    Google Scholar 

  20. E. Hirsch et al., MVDC/HVDC Power Conversion with Optically-Controlled GaN Switches (Sandia National Lab (SNL-NM), Albuquerque, 2018)

    Google Scholar 

  21. ABB Inc., Submarine Cable Design Sheet — 1,000 MW, http://www.necplink.com/docs/Champlain_VT_electronic/04%20L.%20Eng/Exh.%20TDI-LE-4%20(HVDC%20Cable%20Design%20Sheet%20(ABB)).pdf

  22. Toshiba Electronic Devices & Storage Corporation, Calculating the Temperature of Discrete Semiconductor Devices, App. Note 2018-07-26 (2018)

    Google Scholar 

  23. J. Neely, J. Delhotal, L. Rashkin, S. Glover, Stability of high-bandwidth power electronic systems with transmission lines, in IEEE Elec. Ship Tech. Symp, (IEEE, 2017), pp. 176–181

    Google Scholar 

Download references

Acknowledgments

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the US Department of Energy or the United States Government. The work described herein was funded by the ARPA-E BREAKERS program directed by Dr. Isik C. Kizilyalli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kaplar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flicker, J.D. et al. (2023). Light-Triggered Solid-State Circuit Breaker for DC Electrical Systems. In: Kizilyalli, I.C., Shen, Z.J., Cunningham, D.W. (eds) Direct Current Fault Protection. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-26572-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26572-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26571-6

  • Online ISBN: 978-3-031-26572-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics