Skip to main content

Short-Term Traffic Speed Prediction Using Hybrid LSTM-SVR Model

  • Conference paper
  • First Online:
Robot Intelligence Technology and Applications 7 (RiTA 2022)

Abstract

Traffic speed prediction uses historical data to model traffic patterns and generates forecasts for future steps. As the number of vehicles surges significantly, traffic congestion could negatively affect the quality of life, human health, and the environment. Thus, finding a method providing accurate and robust forecasts for road users and traffic management is a crucial task. In traffic prediction, capturing both long and short-term patterns is necessary for forecasting precisely. However, traditional models only perform well in short-term modeling and vice versa. This paper aims to create a hybrid model, namely LSTM-SVR, to overcome the mentioned difficulty. The LSTM-SVR combines long short-term memory (LSTM) for modeling long-term dependencies with support vector regression (SVR) for capturing short-term features. The experiments corroborate that the model outperforms popular selected baselines. The results also show the ability of the proposed model to capture peak hours and short-term patterns. This research provides a reliable forecasting tool for traffic engineers and new insights into hybrid model design in traffic speed prediction. The source code for the model from this paper is publicly available and can be found at https://github.com/adasken/lstm-svr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdullah, M.A., et al.: The effect of image input transformation from inertial measurement unit data on the classification of skateboarding tricks. In: Chew, E., et al. (eds.) RiTA 2020. LNME, pp. 424–432. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-4803-8_42

    Chapter  Google Scholar 

  2. Chang, G., Zhang, Y., Yao, D., Yue, Y.: A summary of short-term traffic flow forecasting methods. ICCTP 2011, 1696–1707 (2011)

    Google Scholar 

  3. Chi, Z., Shi, L.: Short-term traffic flow forecasting using ARIMA-SVM algorithm and R. In: 2018 5th International Conference on Information Science and Control Engineering (ICISCE), pp. 517–522 (2018)

    Google Scholar 

  4. Choong, C.S., Ab. Nasir, A.F., P. P. Abdul Majeed, A., Zakaria, M.A., Mohd Razman, M.A.: Machine learning approach in identifying speed breakers for autonomous driving: an overview. In: P. P. Abdul Majeed, A., Mat-Jizat, J.A., Hassan, M.H.A., Taha, Z., Choi, H.L., Kim, J. (eds.) RITA 2018. LNME, pp. 409–424. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8323-6_35

    Chapter  Google Scholar 

  5. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  6. Fu, R., Zhang, Z., Li, L.: Using LSTM and GRU neural network methods for traffic flow prediction. In: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 324–328 (2016)

    Google Scholar 

  7. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. TNNLS 28(10), 2222–2232 (2016)

    MathSciNet  Google Scholar 

  8. Hasan, M.J., et al.: Gearbox fault diagnostics: an evaluation of fast-Fourier transform-based extracted features with support vector machine classifier. In: Chew, E., et al. (eds.) RiTA 2020. LNME, pp. 409–413. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-4803-8_40

    Chapter  Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  10. Hsueh, Y.-L., Yang, Y.-R.: A short-term traffic speed prediction model based on LSTM networks. Int. J. Intell. Transp. Syst. Res. 19(3), 510–524 (2021). https://doi.org/10.1007/s13177-021-00260-7

    Article  Google Scholar 

  11. Jia, Y., Wu, J., Du, Y.: Traffic speed prediction using deep learning method. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 1217–1222 (2016)

    Google Scholar 

  12. Kamarianakis, Y., Kanas, A., Prastacos, P.: Modeling traffic volatility dynamics in an urban network. Transp. Res. Rec. 1923(1), 18–27 (2005)

    Article  Google Scholar 

  13. Kim, H., Shim, D.H.: Vehicle trajectory prediction with convolutional neural network and sequence-to-sequence. In: Chew, E., et al. (eds.) RiTA 2020. LNME, pp. 109–114. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-4803-8_13

    Chapter  Google Scholar 

  14. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)

  15. Lim, H., Myung, H.: Effective indoor robot localization by stacked bidirectional LSTM using beacon-based range measurements. In: Kim, J.-H., Myung, H., Lee, S.-M. (eds.) RiTA 2018. CCIS, vol. 1015, pp. 144–151. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-7780-8_12

    Chapter  Google Scholar 

  16. Liu, Y., Wu, H.: Prediction of road traffic congestion based on random forest. In: 2017 10th International Symposium on Computational Intelligence and Design (ISCID) vol. 2, pp. 361–364. IEEE (2017)

    Google Scholar 

  17. Raza, A., Zhong, M.: Hybrid lane-based short-term urban traffic speed forecasting: a genetic approach. In: 2017 4th International Conference on Transportation Information and Safety (ICTIS) ICTIS, pp. 271–279 (2017)

    Google Scholar 

  18. Wang, Y., Li, Z., Chen, Y., Liao, W., Wang, A.: Human gait prediction for lower limb rehabilitation exoskeleton using gated recurrent units. In: Chew, E., et al. (eds.) RiTA 2020. LNME, pp. 128–135. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-4803-8_15

    Chapter  Google Scholar 

  19. Williams, B.M., Hoel, L.A.: Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. J. Transp. Eng. 129(6), 664–672 (2003)

    Article  Google Scholar 

  20. Xie, J., Choi, Y.K.: Hybrid traffic prediction scheme for intelligent transportation systems based on historical and real-time data. Int. J. Distrib. Sens. Netw. 13(11), 1550147717745009 (2017)

    Article  Google Scholar 

  21. Zhang, L., Liu, Q., Yang, W., Wei, N., Dong, D.: An improved k-nearest neighbor model for short-term traffic flow prediction. Procedia. Soc. Behav. Sci. 96, 653–662 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Tam Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quach, K.N.D. et al. (2023). Short-Term Traffic Speed Prediction Using Hybrid LSTM-SVR Model. In: Jo, J., et al. Robot Intelligence Technology and Applications 7. RiTA 2022. Lecture Notes in Networks and Systems, vol 642. Springer, Cham. https://doi.org/10.1007/978-3-031-26889-2_40

Download citation

Publish with us

Policies and ethics