Skip to main content

“Metal Halide Perovskite Solar Modules: The Challenge of Upscaling and Commercializing This Technology”

  • Chapter
  • First Online:
Metal-Halide Perovskite Semiconductors

Abstract

Metal halide perovskite solar cells (PSCs) and modules offer promise as an ultralow-cost, high-performing renewable energy source due to their high-power conversion efficiency (PCE), low materials cost, diverse deposition routes (e.g., vapor phase, solution-processable fabrication), and potential use in tandem configurations, due to their bandgap tunability. PSCs potentially have additional nontraditional applications given their compatibility with flexible substrates. However, commercializing metal halide perovskite (MHP) solar modules for large-scale mass manufacturing while maintaining high performance is proving to be challenging. These challenges include developing processes to deposit high-quality, large-area films, scribe and interconnect cells, and package large format modules, all without significant performance loss. In addition, there also exist metrology challenges; current methods to measure PSC efficiency are slow and require specialized equipment such as continuous solar simulators. Upscaling of production will require faster methods to monitor the quality and performance of the modules during production. For MHP modules to be viable in the commercial market, methods need to be developed and validated to determine if modules are prone to known early failures or rapid degradation. Accelerated stress tests need to be developed, validated, and standardized to demonstrate operational stability so that consumers have confidence that MHP modules will meet commercial expectations. Finally, risks associated with the toxicity and exposure from lead-containing PSCs and modules need further evaluation. Lead concentration in PSCs is very low but it is in a soluble form. In response, researchers are working to either reduce or remove lead from the active-layer perovskite composition or add materials that bind to or slow the transport of lead from modules in the event that they break or end up in a landfill. This chapter focuses on recent research efforts for large-area perovskite solar modules. We include published reports on cell-to-module advancements, manufacturing progress and challenges, performance characterization for large-area modules, reliability, and environmental risks associated with the most current technology to advance the commercialization of MHP solar modules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells (Vol. 131, pp. 6050–6051). American Chemical Society.

    Google Scholar 

  2. Bellini, E. (2021). UNIST, EPFL claim 25.6% efficiency world record for perovskite solar cell.

    Google Scholar 

  3. Siegler, T. D. et al. (2022). The path to perovskite commercialization: A perspective from the United States solar energy technologies office. ACS Energy Letters, 1728–1734. https://doi.org/10.1021/acsenergylett.2c00698.

  4. Smith, B. L., Woodhouse, M., Horowitz, K. A. W., Silverman, T. J., Zuboy, J., & Margolis, R. M. (2021). Photovoltaic (PV) Module Technologies_ 2020 Benchmark costs and technology evolution framework results. NREL.

    Book  Google Scholar 

  5. Wilson, G. M., et al. (2020). The 2020 photovoltaic technologies roadmap. Journal of Physics D: Applied Physics, 53. https://doi.org/10.1088/1361-6463/ab9c6a

  6. Pérez-Gutiérrez, E., et al. (2017). Organic solar cells all made by blade and slot–die coating techniques. Solar Energy, 146, 79–84. https://doi.org/10.1016/j.solener.2017.02.004

    Article  Google Scholar 

  7. Yang, Z., Zhang, W., Wu, S., Zhu, H., Liu, Z., Lui, Z., Jiang, Z., Chen, R., & Zhou, J. (2021). Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module.

    Google Scholar 

  8. Rong, Y., et al. (2018). Toward industrial-scale production of perovskite solar cells: Screen printing, slot-die coating, and emerging techniques. Journal of Physical Chemistry Letters, 9, 2707–2713. https://doi.org/10.1021/acs.jpclett.8b00912

    Article  Google Scholar 

  9. Liu, C., Cheng, Y. B., & Ge, Z. (2020). Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chemical Society Reviews, 49, 1653–1687. https://doi.org/10.1039/c9cs00711c

    Article  Google Scholar 

  10. Bishop, J. E., Smith, J. A., & Lidzey, D. G. (2020). Development of spray-coated perovskite solar cells. ACS Applied Materials & Interfaces, 12, 48237–48245. https://doi.org/10.1021/acsami.0c14540

    Article  Google Scholar 

  11. Lee, D. S., et al. (2022). Fully scalable and stable CsPbI2Br solar cells realized by an all-spray-coating process. ACS Applied Materials & Interfaces, 14, 7926–7935. https://doi.org/10.1021/acsami.1c21644

    Article  Google Scholar 

  12. Parida, B. et al. (2022). Recent developments in upscalable printing techniques for perovskite solar cells. Advanced Science (Weinh), e2200308. https://doi.org/10.1002/advs.202200308.

  13. Howard, I. A., et al. (2019). Coated and printed perovskites for photovoltaic applications. Advanced Materials, 31, e1806702. https://doi.org/10.1002/adma.201806702

    Article  Google Scholar 

  14. Castro-Hermosa, S., et al. (2020). Efficient fully blade-coated perovskite solar cells in air with nanometer-thick bathocuproine buffer layer. Nano Research, 14, 1034–1042. https://doi.org/10.1007/s12274-020-3147-4

    Article  Google Scholar 

  15. Liang, Q., et al. (2022). Manipulating crystallization kinetics in high-performance blade-coated perovskite solar cells via cosolvent-assisted phase transition. Advanced Materials, e2200276. https://doi.org/10.1002/adma.202200276.

  16. Razza, S., et al. (2015). Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process. Journal of Power Sources, 277, 286–291. https://doi.org/10.1016/j.jpowsour.2014.12.008

    Article  Google Scholar 

  17. Ouyang, Z., Yang, M., Whitaker, J. B., Li, D., & van Hest, M. F. A. M. (2020). Toward scalable perovskite solar modules using blade coating and rapid thermal processing. ACS Applied Energy Materials, 3, 3714–3720. https://doi.org/10.1021/acsaem.0c00180

    Article  Google Scholar 

  18. de Oliveira, M. C. C., Diniz Cardoso, A. S. A., Viana, M. M., & Lins, V. D. F. C. (2018). The causes and effects of degradation of encapsulant ethylene vinyl acetate copolymer (EVA) in crystalline silicon photovoltaic modules: A review. Renewable and Sustainable Energy Reviews, 81, 2299–2317. https://doi.org/10.1016/j.rser.2017.06.039

    Article  Google Scholar 

  19. Li, J., et al. (2021). Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization. Journal of Power Sources, 485. https://doi.org/10.1016/j.jpowsour.2020.229313

  20. Wang, Y., et al. (2022). Encapsulation and stability testing of perovskite solar cells for real life applications. ACS Materials Au, 2, 215–236. https://doi.org/10.1021/acsmaterialsau.1c00045

    Article  Google Scholar 

  21. Liu, Z., et al. (2020). A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nature Energy, 5, 596–604. https://doi.org/10.1038/s41560-020-0653-2

    Article  Google Scholar 

  22. Tong, G., et al. (2021). Scalable fabrication of >90 cm2 perovskite solar modules with >1000 h operational stability based on the intermediate phase strategy. Advanced Energy Materials, 11. https://doi.org/10.1002/aenm.202003712

  23. Sha, Y., et al. (2020). A scalable integrated dopant-free heterostructure to stabilize perovskite solar cell modules. Advanced Energy Materials, 11. https://doi.org/10.1002/aenm.202003301

  24. Jiang, Y., et al. (2018). Combination of hybrid CVD and cation exchange for upscaling Cs-substituted mixed cation perovskite solar cells with high efficiency and stability. Advanced Functional Materials, 28. https://doi.org/10.1002/adfm.201703835

  25. Jiang, Y., et al. (2019). Negligible-Pb-waste and upscalable perovskite deposition technology for high-operational-stability perovskite solar modules. Advanced Energy Materials, 9. https://doi.org/10.1002/aenm.201803047

  26. Bu, T., et al. (2019). Dynamic antisolvent engineering for spin coating of 10 × 10 cm2 perovskite solar module approaching 18%. Solar RRL, 4. https://doi.org/10.1002/solr.201900263

  27. Dai, X., et al. (2019). Scalable fabrication of efficient perovskite solar modules on flexible glass substrates. Advanced Energy Materials, 10. https://doi.org/10.1002/aenm.201903108

  28. Chiang, C.-H., Nazeeruddin, M. K., Grätzel, M., & Wu, C.-G. (2017). The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy & Environmental Science, 10, 808–817. https://doi.org/10.1039/c6ee03586h

    Article  Google Scholar 

  29. Hu, C., et al. (2021). Discovery of a new intermediate enables one-step deposition of high-quality perovskite films via solvent engineering. Solar RRL, 5. https://doi.org/10.1002/solr.202000712

  30. Im, J.-H., Kim, H.-S., & Park, N.-G. (2014). Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Materials, 2. https://doi.org/10.1063/1.4891275

  31. Liu, Z., et al. (2021). Scalable one-step heating up synthesis of Cu2ZnSnS4 nanocrystals hole conducting materials for carbon electrode based perovskite solar cells. Solar Energy, 224, 51–57. https://doi.org/10.1016/j.solener.2021.05.089

    Article  Google Scholar 

  32. Christians, J. A., et al. (2018). Stability at scale: Challenges of module interconnects for perovskite photovoltaics. ACS Energy Letters, 3, 2502–2503. https://doi.org/10.1021/acsenergylett.8b01498

    Article  Google Scholar 

  33. Yang, M., et al. (2017). Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nature Energy, 2. https://doi.org/10.1038/nenergy.2017.38

  34. Nair, S., Patel, S. B., & Gohel, J. V. (2020). Recent trends in efficiency-stability improvement in perovskite solar cells. Materials Today Energy, 17. https://doi.org/10.1016/j.mtener.2020.100449

  35. Qiu, L., et al. (2019). Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm2 approaching 10% efficiency. Journal of Materials Chemistry A, 7, 6920–6929. https://doi.org/10.1039/c9ta00239a

    Article  Google Scholar 

  36. Leyden, M. R., Jiang, Y., & Qi, Y. (2016). Chemical vapor deposition grown formamidinium perovskite solar modules with high steady state power and thermal stability. Journal of Materials Chemistry A, 4, 13125–13132. https://doi.org/10.1039/c6ta04267h

    Article  Google Scholar 

  37. Li, J., et al. (2020). Highly efficient thermally co-evaporated perovskite solar cells and mini-modules. Joule, 4, 1035–1053. https://doi.org/10.1016/j.joule.2020.03.005

    Article  Google Scholar 

  38. Compaan, A. D., Gupta, A., Lee, S., Wang, S., & Drayton, J. (2004). High efficiency, magnetron sputtered CdS/CdTe solar cells. Solar Energy, 77, 815–822. https://doi.org/10.1016/j.solener.2004.06.013

    Article  Google Scholar 

  39. Ramanujam, J., et al. (2020). Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review. Progress in Materials Science, 110. https://doi.org/10.1016/j.pmatsci.2019.100619

  40. Han, G. S., et al. (2019). Spin-coating process for 10 cm × 10 cm perovskite solar modules enabled by self-assembly of SnO2 nanocolloids. ACS Energy Letters, 4, 1845–1851. https://doi.org/10.1021/acsenergylett.9b00953

    Article  Google Scholar 

  41. Park, N.-G., & Zhu, K. (2020). Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nature Reviews Materials, 5, 333–350. https://doi.org/10.1038/s41578-019-0176-2

    Article  Google Scholar 

  42. Cheng, R., et al. (2019). An air knife-assisted recrystallization method for ambient-process planar perovskite solar cells and its dim-light harvesting. Small, 15, e1804465. https://doi.org/10.1002/smll.201804465

    Article  Google Scholar 

  43. Zhang, X., Yang, W., Qi, J., & Hu, Y. (2020). Preparing ambient-processed perovskite solar cells with better electronic properties via preheating assisted one-step deposition method. Nanoscale Research Letters, 15, 178. https://doi.org/10.1186/s11671-020-03407-9

    Article  Google Scholar 

  44. Li, P., Omer Mohamed, M. I., Xu, C., Wang, X., & Tang, X. (2020). Electrical property modified hole transport layer (PEDOT:PSS) enhance the efficiency of perovskite solar cells: Hybrid co-solvent post-treatment. Organic Electronics, 78. https://doi.org/10.1016/j.orgel.2019.105582

  45. Li, C.-Y., et al. (2021). Anti-solvent mixture-mediated reduction of photocurrent hysteresis in high-impurity perovskite precursor based MAPbI3 solar cells. Solar Energy, 214, 86–92. https://doi.org/10.1016/j.solener.2020.11.062

    Article  Google Scholar 

  46. Lee, D.-K., Lim, K.-S., Lee, J.-W., & Park, N.-G. (2021). Scalable perovskite coating via anti-solvent-free Lewis acid–base adduct engineering for efficient perovskite solar modules. Journal of Materials Chemistry A, 9, 3018–3028. https://doi.org/10.1039/d0ta10366g

    Article  Google Scholar 

  47. Zhang, F., & Zhu, K. (2019). Additive engineering for efficient and stable perovskite solar cells. Advanced Energy Materials, 10. https://doi.org/10.1002/aenm.201902579

  48. Liu, Y., et al. (2021). Ionic additive engineering for stable planar perovskite solar cells with efficiency >22%. Chemical Engineering Journal, 426. https://doi.org/10.1016/j.cej.2021.130841

  49. Li, Y., Dailey, M., Lohr, P. J., & Printz, A. D. (2021). Performance and stability improvements in metal halide perovskite with intralayer incorporation of organic additives. Journal of Materials Chemistry A, 9, 16281–16338. https://doi.org/10.1039/d1ta05252g

    Article  Google Scholar 

  50. Conings, B., et al. (2015). The impact of precursor water content on solution-processed organometal halide perovskite films and solar cells. Journal of Materials Chemistry A, 3, 19123–19128. https://doi.org/10.1039/c5ta06199g

    Article  Google Scholar 

  51. Sakai, N., et al. (2017). Controlling nucleation and growth of metal halide perovskite thin films for high-efficiency perovskite solar cells. Small, 13. https://doi.org/10.1002/smll.201602808

  52. Cheng, Y., Peng, Y., Jen, A. K. Y., & Yip, H.-L. (2021). Development and challenges of metal halide perovskite solar modules. Solar RRL, https://doi.org/10.1002/solr.202100545.

  53. Zhong, J. X., Wu, W. Q., Ding, L., & Kuang, D. B. (2020). Blade-coating perovskite films with diverse compositions for efficient photovoltaics. Energy & Environmental Materials, 4, 277–283. https://doi.org/10.1002/eem2.12118

    Article  Google Scholar 

  54. Gao, L.-L., Li, C.-X., Li, C.-J., & Yang, G.-J. (2017). Large-area high-efficiency perovskite solar cells based on perovskite films dried by the multi-flow air knife method in air. Journal of Materials Chemistry A, 5, 1548–1557. https://doi.org/10.1039/c6ta09565h

    Article  Google Scholar 

  55. Abdelsamie, M., et al. (2020). Impact of Processing on Structural and Compositional Evolution in Mixed Metal Halide Perovskites during Film Formation. Advanced Functional Materials, 30. https://doi.org/10.1002/adfm.202001752

  56. Zhang, H., et al. (2022). A universal co-solvent dilution strategy enables facile and cost-effective fabrication of perovskite photovoltaics. Nature Communications, 13, 89. https://doi.org/10.1038/s41467-021-27740-4

    Article  Google Scholar 

  57. Liu, R., et al. (2020). The synergistic effect of co-solvent engineering and thermal engineering towards phase control two-dimensional perovskite solar cells. Solar Energy, 209, 446–453. https://doi.org/10.1016/j.solener.2020.09.006

    Article  Google Scholar 

  58. Ha, S. T., Su, R., Xing, J., Zhang, Q., & Xiong, Q. (2017). Metal halide perovskite nanomaterials: Synthesis and applications. Chemical Science, 8, 2522–2536. https://doi.org/10.1039/c6sc04474c

    Article  Google Scholar 

  59. Sun, J., Li, F., Yuan, J., & Ma, W. (2021). Advances in metal halide perovskite film preparation: The role of anti-solvent treatment. Small Methods, 5, e2100046. https://doi.org/10.1002/smtd.202100046

    Article  Google Scholar 

  60. Li, M., et al. (2017). Enhanced efficiency and stability of perovskite solar cells via anti-solvent treatment in two-step deposition method. ACS Applied Materials & Interfaces, 9, 7224–7231. https://doi.org/10.1021/acsami.7b01136

    Article  Google Scholar 

  61. Lee, D. S., et al. (2019). Grain quality engineering for organic metal halide perovskites using mixed antisolvent spraying treatment. Solar RRL, 4. https://doi.org/10.1002/solr.201900397

  62. Moot, T., et al. (2020). CsI-antisolvent adduct formation in all-inorganic metal halide perovskites. Advanced Energy Materials, 10. https://doi.org/10.1002/aenm.201903365

  63. Lee, J. W., Kim, H. S., & Park, N. G. (2016). Lewis acid-base adduct approach for high efficiency perovskite solar cells. Accounts of Chemical Research, 49, 311–319. https://doi.org/10.1021/acs.accounts.5b00440

    Article  Google Scholar 

  64. Wang, S., et al. (2020). Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. Journal of Materials Chemistry A, 8, 12201–12225. https://doi.org/10.1039/d0ta03957h

    Article  Google Scholar 

  65. Jia, Q., et al. (2020). Large-grained all-inorganic bismuth-based perovskites with narrow band gap via lewis acid-base adduct approach. ACS Applied Materials & Interfaces, 12, 43876–43884. https://doi.org/10.1021/acsami.0c14512

    Article  Google Scholar 

  66. Abbas, M., et al. (2020). A critical review on crystal growth techniques for scalable deposition of photovoltaic perovskite thin films. Materials (Basel), 13. https://doi.org/10.3390/ma13214851

  67. Reddy, S. S., et al. (2019). Lewis acid-base adduct-type organic hole transport material for high performance and air-stable perovskite solar cells. Nano Energy, 58, 284–292. https://doi.org/10.1016/j.nanoen.2019.01.041

    Article  Google Scholar 

  68. Heo, Y. J., et al. (2021). Enhancing performance and stability of tin halide perovskite light emitting diodes via coordination engineering of lewis acid–base adducts. Advanced Functional Materials, 31. https://doi.org/10.1002/adfm.202106974

  69. Sun, H., et al. (2021). Strategies and methods for fabricating high quality metal halide perovskite thin films for solar cells. Journal of Energy Chemistry, 60, 300–333. https://doi.org/10.1016/j.jechem.2021.01.001

    Article  Google Scholar 

  70. Liu, C., et al. (2020). Tailoring C60 for efficient inorganic CsPbI2 Br perovskite solar cells and modules. Advanced Materials, 32, e1907361. https://doi.org/10.1002/adma.201907361

    Article  Google Scholar 

  71. Abdelsamie, M., et al. (2021). Mechanism of additive-assisted room-temperature processing of metal halide perovskite thin films. ACS Applied Materials & Interfaces, 13, 13212–13225. https://doi.org/10.1021/acsami.0c22630

    Article  Google Scholar 

  72. Liu, Z., Ono, L. K., & Qi, Y. (2020). Additives in metal halide perovskite films and their applications in solar cells. Journal of Energy Chemistry, 46, 215–228. https://doi.org/10.1016/j.jechem.2019.11.008

    Article  Google Scholar 

  73. Ling, J., et al. (2021). A perspective on the commercial viability of perovskite solar cells. Solar RRL, 5. https://doi.org/10.1002/solr.202100401

  74. Vesce, L., et al. (2021). Ambient air blade-coating fabrication of stable triple-cation perovskite solar modules by green solvent quenching. Solar RRL, 5. https://doi.org/10.1002/solr.202100073

  75. Tian, S., et al. (2019). A facile green solvent engineering for up-scaling perovskite solar cell modules. Solar Energy, 183, 386–391. https://doi.org/10.1016/j.solener.2019.03.038

    Article  Google Scholar 

  76. Zhang, M., Xin, D., Zheng, X., Chen, Q., & Zhang, W.-H. (2020). Toward Greener solution processing of perovskite solar cells. ACS Sustainable Chemistry & Engineering, 8, 13126–13138. https://doi.org/10.1021/acssuschemeng.0c04289

    Article  Google Scholar 

  77. Hoang, M. T., et al. (2021). Towards the environmentally friendly solution processing of metal halide perovskite technology. Green Chemistry, 23, 5302–5336. https://doi.org/10.1039/d1gc01756j

    Article  Google Scholar 

  78. Cui, Y., Wang, S., Ding, L., & Hao, F. (2020). Green–solvent–processable perovskite solar cells. Advanced Energy and Sustainability Research, 2. https://doi.org/10.1002/aesr.202000047

  79. Ahmed, D. S., Mohammed, B. K., & Mohammed, M. K. A. (2021). Long-term stable and hysteresis-free planar perovskite solar cells using green antisolvent strategy. Journal of Materials Science, 56, 15205–15214. https://doi.org/10.1007/s10853-021-06200-w

    Article  Google Scholar 

  80. Bu, T., et al. (2017). Synergic interface optimization with green solvent engineering in mixed perovskite solar cells. Advanced Energy Materials, 7. https://doi.org/10.1002/aenm.201700576

  81. Worsley, C., et al. (2021). γ-Valerolactone: A nontoxic green solvent for highly stable printed mesoporous perovskite solar cells. Energy Technology, 9. https://doi.org/10.1002/ente.202100312

  82. Worsley, C., et al. (2022). Green solvent engineering for enhanced performance and reproducibility in printed carbon-based mesoscopic perovskite solar cells and modules. Materials Advances, 3, 1125–1138. https://doi.org/10.1039/d1ma00975c

    Article  Google Scholar 

  83. Rakocevic, L., et al. (2017). Interconnection optimization for highly efficient perovskite modules. IEEE Journal of Photovoltaics, 7, 404–408. https://doi.org/10.1109/jphotov.2016.2626144

    Article  Google Scholar 

  84. Yang, M., et al. (2018). Highly efficient perovskite solar modules by scalable fabrication and interconnection optimization. ACS Energy Letters, 3, 322–328. https://doi.org/10.1021/acsenergylett.7b01221

    Article  Google Scholar 

  85. Bailie, C., Eberspacher, C., Gehan, E., Bramante, R., & Hest, M. (2019). In IEEE 46th photovoltaic specialists conference, 1–5.

    Google Scholar 

  86. Kim, D. H., Whitaker, J. B., Li, Z., van Hest, M. F. A. M., & Zhu, K. (2018). Outlook and challenges of perovskite solar cells toward terawatt-scale photovoltaic module technology. Joule, 2, 1437–1451. https://doi.org/10.1016/j.joule.2018.05.011

    Article  Google Scholar 

  87. Razza, S., Pescetelli, S., Agresti, A., & Di Carlo, A. (2021). Laser processing optimization for large-area perovskite solar modules. Energies, 14. https://doi.org/10.3390/en14041069

  88. Rong, Y., et al. (2018). Challenges for commercializing perovskite solar cells. Science, 361. https://doi.org/10.1126/science.aat8235

  89. Di Giacomo, F., et al. (2020). Upscaling Inverted perovskite solar cells: Optimization of laser scribing for highly efficient mini-modules. Micromachines (Basel), 11. https://doi.org/10.3390/mi11121127

  90. Klaus Ellmer, A. K. B. R. (2007). Transparent conductive zinc oxide (Vol. 104). Springer.

    Google Scholar 

  91. Walter, A., et al. (2018). Closing the cell-to-module efficiency gap: A fully laser scribed perovskite minimodule with 16% steady-state aperture area efficiency. IEEE Journal of Photovoltaics, 8, 151–155. https://doi.org/10.1109/jphotov.2017.2765082

    Article  Google Scholar 

  92. Tamai, H., & Sato, T. (2020). Japan’s NEDO and panasonic achieve the world’s highest conversion efficiency of 16.09% for largest-area perovskite solar cell module. https://www.businesswire.com/news/home/20200206006046/en/Japan%E2%80%99s-NEDO-and-Panasonic-Achieve-the-World%E2%80%99s-Highest-Conversion-Efficiency-of-16.09-for-Largest-area-Perovskite-Solar-Cell-Module

  93. Li, H., et al. (2020). Recent progress towards roll-to-roll manufacturing of perovskite solar cells using slot-die processing. Flexible and Printed Electronics, 5. https://doi.org/10.1088/2058-8585/ab639e

  94. Angmo, D., et al. (2021). A lab-to-fab study toward roll-to-roll fabrication of reproducible perovskite solar cells under ambient room conditions. Cell Reports Physical Science, 2. https://doi.org/10.1016/j.xcrp.2020.100293

  95. Martin, B., Amos, D., Brehob, E., van Hest, M. F. A. M., & Druffel, T. (2021). Techno-economic analysis of roll-to-roll production of perovskite modules using radiation thermal processes. Applied Energy. https://doi.org/10.1016/j.apenergy.2021.118200

  96. Zhong, Z. W., Shan, X. C., & Wong, S. J. (2011). Roll-to-roll large-format slot die coating of photosensitive resin for UV embossing. Microsystem Technologies, 17, 1703–1711. https://doi.org/10.1007/s00542-011-1344-5

    Article  Google Scholar 

  97. Moon, S.-J., et al. (2015). Laser-scribing patterning for the production of organometallic halide perovskite solar modules. IEEE Journal of Photovoltaics, 5, 1087–1092. https://doi.org/10.1109/jphotov.2015.2416913

    Article  Google Scholar 

  98. Meroni, S. M. P., et al. (2020). Scribing method for carbon perovskite solar modules. Energies, 13. https://doi.org/10.3390/en13071589

  99. Markauskas, E., Gečys, P., Repins, I., Beall, C., & Račiukaitis, G. (2017). Laser lift-off scribing of the CZTSe thin-film solar cells at different pulse durations. Solar Energy, 150, 246–254. https://doi.org/10.1016/j.solener.2017.01.074

    Article  Google Scholar 

  100. Castriotta, L. A., et al. (2022). Reducing losses in perovskite large area solar technology: Laser design optimization for highly efficient modules and minipanels. Advanced Energy Materials, https://doi.org/10.1002/aenm.202103420.

  101. Taheri, B., et al. (2021). Laser-scribing optimization for sprayed SnO2-based perovskite solar modules on flexible plastic substrates. ACS Applied Energy Materials, 4, 4507–4518. https://doi.org/10.1021/acsaem.1c00140

    Article  Google Scholar 

  102. Lee, D.-K., & Park, N.-G. (2021). Materials and methods for high-efficiency perovskite solar modules. Solar RRL, https://doi.org/10.1002/solr.202100455.

  103. Jung, E. H., et al. (2019). Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 567, 511–515. https://doi.org/10.1038/s41586-019-1036-3

    Article  Google Scholar 

  104. Deng, Y., et al. (2018). Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy, 3, 560–566. https://doi.org/10.1038/s41560-018-0153-9

    Article  Google Scholar 

  105. International Standard IEC 60904-1{ed2.0). (2006–09).

    Google Scholar 

  106. Silverman, T., Jahn, U., Apolloni, M., Louwen, A., Schweiger, M., Bellurado, G., Wagner, J., Tetzlaff, A., Ingenhoven, P., & Moser, D. (2014). Characterisation of performance of thin film PV technologies. (International Energy Agency Project: IEA PVPS Task 13).

    Google Scholar 

  107. Silverman, T. J., Jahn, U., Friesen, G., Pravettoni, M., Apolloni, M., Louwen, A., van Sark, W. G. J. H. M., Schweiger, M., Belluardo, G., Wagner, J., Tetzlaff, A., Ingenhoven, P., & Moser, D. (2020). In IEA International Energy Agency (SFOE NREL, 2020).

    Google Scholar 

  108. Silverman, T., Jahn, U., Friesen, G., Pravettoni, M., Apolloni, M., Louwen, A., Schweiger, M., Bellurado, G., Wagner, J., Tetzlaff, A., & Moser, I. D. (2014). IEA-PVPS_T13-02_2014_Characterization_ThinFilm_Modules.

    Google Scholar 

  109. Bardizza, G., Müllejans, H., Pavanello, D., & Dunlop, E. D. (2021). Metastability in performance measurements of perovskite PV devices: A systematic approach. Journal of Physics: Energy, 3. https://doi.org/10.1088/2515-7655/abd678

  110. Fu, Y. (2022). Stabilization of metastable halide perovskite lattices in the 2D limit. Advanced Materials, 34, e2108556. https://doi.org/10.1002/adma.202108556

    Article  Google Scholar 

  111. Fell, C. J. (2019). Standardising current–voltage measurements for metastable solar cells. Journal of Physics: Energy, 2. https://doi.org/10.1088/2515-7655/ab55cc

  112. Silverman, T. J., M. G. D., Marion, B., Krutz, S. R. (2014). In 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC).

    Google Scholar 

  113. Yan, X., et al. (2022). Ion migration in hybrid perovskites: Classification, identification, and manipulation. Nano Today, 44. https://doi.org/10.1016/j.nantod.2022.101503

  114. Deceglie, M. G., et al. (2015). Validated method for repeatable power measurement of cigs modules exhibiting light-induced metastabilities. IEEE Journal of Photovoltaics, 5, 607–612. https://doi.org/10.1109/jphotov.2014.2376056

    Article  Google Scholar 

  115. Zhang, S., et al. (2022). Improved performance and stability of perovskite solar modules by interface modulating with graphene oxide crosslinked CsPbBr3 quantum dots. Energy & Environmental Science, 15, 244–253. https://doi.org/10.1039/d1ee01778k

    Article  Google Scholar 

  116. Kim, H. S., et al. (2015). Control of I–V hysteresis in CH3NH3PbI3 perovskite solar cell. Journal of Physical Chemistry Letters, 6, 4633–4639. https://doi.org/10.1021/acs.jpclett.5b02273

    Article  Google Scholar 

  117. Yan, X., W. F., Cheng, F., Sun, H., Xu, C., Wang, L., Kang, Z., Zhang, Y. (2022). Ion migration in perovskite solar cells. Science Direct.

    Google Scholar 

  118. Xiaoxue Ren, L. Z., Yongbo Yuan, Liming Ding. (2021). Ion migration in perovskite solar cells. Journal of Semiconductors. https://doi.org/10.1088/1674-4926/42/1/010201.

  119. Zhu, W., et al. (2022). Ion migration in organic-inorganic hybrid perovskite solar cells: current understanding and perspectives. Small, 18, e2105783. https://doi.org/10.1002/smll.202105783

    Article  Google Scholar 

  120. Elumalai, N. K., & Uddin, A. (2016). Hysteresis in organic-inorganic hybrid perovskite solar cells. Solar Energy Materials and Solar Cells, 157, 476–509. https://doi.org/10.1016/j.solmat.2016.06.025

    Article  Google Scholar 

  121. Martiradonna, L. (2018). Riddles in perovskite research. Nature Materials, 17, 377. https://doi.org/10.1038/s41563-018-0072-y

    Article  Google Scholar 

  122. Doumon, N. Y. (2019). The degradation of organic solar cells: From chemistry to device physics through materials. https://doi.org/10.33612/diss.98539626.

  123. Wohlgemuth, J. (2020). Photovoltaic Module Reliability.

    Google Scholar 

  124. Reese, M. O., et al. (2011). Consensus stability testing protocols for organic photovoltaic materials and devices. Solar Energy Materials and Solar Cells, 95, 1253–1267. https://doi.org/10.1016/j.solmat.2011.01.036

    Article  Google Scholar 

  125. Asuo, I. M., et al. (2020). Ambient condition-processing strategy for improved air-stability and efficiency in mixed-cation perovskite solar cells. Materials Advances, 1, 1866–1876. https://doi.org/10.1039/d0ma00528b

    Article  Google Scholar 

  126. Khenkin, M. V., et al. (2020). Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy, 5, 35–49. https://doi.org/10.1038/s41560-019-0529-5

    Article  Google Scholar 

  127. Doumon, N. Y., Yang, L., & Rosei, F. (2022). Ternary organic solar cells: A review of the role of the third element. Nano Energy, 94. https://doi.org/10.1016/j.nanoen.2021.106915

  128. Schelhas, L. T., et al. (2019). Insights into operational stability and processing of halide perovskite active layers. Energy & Environmental Science, 12, 1341–1348. https://doi.org/10.1039/c8ee03051k

    Article  Google Scholar 

  129. Bryant, D., et al. (2016). Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy & Environmental Science, 9, 1655–1660. https://doi.org/10.1039/c6ee00409a

    Article  Google Scholar 

  130. Mundt, L. E., et al. (2021). Mixing matters: Nanoscale heterogeneity and stability in metal halide perovskite solar cells. ACS Energy Letters, 7, 471–480. https://doi.org/10.1021/acsenergylett.1c02338

    Article  Google Scholar 

  131. Song, Z., et al. (2015). Impact of processing temperature and composition on the formation of methylammonium lead iodide perovskites. Chemistry of Materials, 27, 4612–4619. https://doi.org/10.1021/acs.chemmater.5b01017

    Article  Google Scholar 

  132. Luchkin, S. Y., et al. (2017). Reversible and irreversible electric field induced morphological and interfacial transformations of hybrid lead iodide perovskites. ACS Applied Materials & Interfaces, 9, 33478–33483. https://doi.org/10.1021/acsami.7b01960

    Article  Google Scholar 

  133. Wang, J., et al. (2021). Tuning an electrode work function using organometallic complexes in inverted perovskite solar cells. Journal of the American Chemical Society, 143, 7759–7768. https://doi.org/10.1021/jacs.1c02118

    Article  Google Scholar 

  134. Schulz, P., Cahen, D., & Kahn, A. (2019). Halide perovskites: Is it all about the interfaces? (Vol. 119, pp. 3349–3417). American Chemical Society.

    Google Scholar 

  135. Dunfield, S. P., et al. (2020). From defects to degradation: A mechanistic understanding of degradation in perovskite solar cell devices and modules. Advanced Energy Materials, 10. https://doi.org/10.1002/aenm.201904054

  136. Motti, S. G., et al. (2019). Controlling competing photochemical reactions stabilizes perovskite solar cells. Nature Photonics, 13, 532–539. https://doi.org/10.1038/s41566-019-0435-1

    Article  Google Scholar 

  137. Akriti et al. Layer-by-layer anionic diffusion in two-dimensional halide perovskite vertical heterostructures. Nature Nanotechnology 16, 584–591, doi:https://doi.org/10.1038/s41565-021-00848-w (2021).

  138. Cho, J., Mathew, P. S., DuBose, J. T., & Kamat, P. V. (2021). Photoinduced halide segregation in ruddlesden-popper 2D mixed halide perovskite films. Advanced Materials, 33, e2105585. https://doi.org/10.1002/adma.202105585

    Article  Google Scholar 

  139. Ding, Y., et al. (2022). Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nature Nanotechnology, 17, 598–605. https://doi.org/10.1038/s41565-022-01108-1

    Article  Google Scholar 

  140. Rehman, A. U., et al. (2021). Electrode metallization for scaled perovskite/silicon tandem solar cells: Challenges and opportunities. Progress in Photovoltaics: Research and Applications. https://doi.org/10.1002/pip.3499

  141. S. Kurtz, J. Wohlgemuth, M. Kempe, N. Bosco, P. Hacke, D. Jordan, D. C. Miller, T. J. Silverman. (2013). Photovoltaic module qualification plus testing.

    Google Scholar 

  142. Smokler, M. I., Otth, D. H., & Ross, R. G. Jr. (1985). In Proceedings of the 18th IEEE photovoltaic specialists conference (Las Vegas, Nevada).

    Google Scholar 

  143. Doyle, T., Desharnais, R., & Lorico, T. E. (2020). 2020 PVEL PV module reliability scorecard.

    Google Scholar 

  144. Owen-Bellini, M., et al. (2020). Advancing reliability assessments of photovoltaic modules and materials using combined-accelerated stress testing. Progress in Photovoltaics: Research and Applications, 29, 64–82. https://doi.org/10.1002/pip.3342

    Article  Google Scholar 

  145. Jeong, S.-H., et al. (2020). Characterizing the efficiency of perovskite solar cells and light-emitting diodes. Joule, 4, 1206–1235. https://doi.org/10.1016/j.joule.2020.04.007

    Article  Google Scholar 

  146. Dunbar, R. B., et al. (2017). How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories. Journal of Materials Chemistry A, 5, 22542–22558. https://doi.org/10.1039/c7ta05609e

    Article  Google Scholar 

  147. DuraMat Durable Module Materials Consortium.

    Google Scholar 

  148. Torrence, C. E., Libby, C. S., Nie, W., Stein, J. S. (2023) Environmental and health risks of perovskite solar modules: Case for better test standards and risk mitigation solutions. iScience, 26(1), 105807. https://doi.org/10.1016/j.isci.2022.105807

  149. Angelidis, T. N., & Kydros, K. A. (1995). Selective gold dissolution from a roasted auriferous pyrite-arsenopyrite concentrate. Hydrometallurgy, 37, 75–88.

    Article  Google Scholar 

  150. Clever, H. L., & Johnston, F. J. (1980). The solubility of some sparingly soluble lead salts: An evaluation of the solubility in water and aqueous electrolyte solution. Journal of Physical and Chemical Reference Data, 9, 751–784. https://doi.org/10.1063/1.555628

    Article  Google Scholar 

  151. Lichty, D. M. (1903). The solubility of the chloride, the bromide, and the iodide of lead, in water, at temperatures from 0° upward. ACS, 25, 469–474. https://doi.org/10.1021/ja02007a002

    Article  Google Scholar 

  152. New Jersey Department of Health. Hazardous Substance Fact Sheet Cesium Hydroxide. (2007).

    Google Scholar 

  153. Garcia, G., et al. (2018). Influence of chromium hyperdoping on the electronic structure of CH3NH3PbI3 perovskite: A first-principles insight. Scientific Reports, 8, 2511. https://doi.org/10.1038/s41598-018-20851-x

    Article  Google Scholar 

  154. Galvao, J., et al. (2014). Unexpected low-dose toxicity of the universal solvent DMSO. The FASEB Journal, 28, 1317–1330. https://doi.org/10.1096/fj.13-235440

    Article  Google Scholar 

  155. Agency for Toxic Substances and Disease Registry (ATSDR) What are the physiologic effects of chromium exposure? (Center for Disease Control, Agency for Toxic Substances and Disease Registry (ATSDR) Environmental Health and Medicine Education, 2013).

    Google Scholar 

  156. Lee, K. P., Chromey, N. C., Culik, R., Barnes, J. R., & Schneider, P. W. (1987). Toxicity of N-methyl-2-pyrrolidone (NMP)_Teratogenic, subchronic, and two-year inhalation studies. PubMed, 9. https://doi.org/10.1016/0272-0590(87)90045-5

  157. Scailteur, V., & Lauwerys, R. R. (1987). Dimethylformamide (DMF) hepatotoxicity. Toxicology, 43, 231–238. https://doi.org/10.1016/0300-483x(87)90082-5

    Article  Google Scholar 

  158. Foxall, K. (Ed.). (2007). Chemical and Environmental hazards UK HPA Centre for Radiation.

    Google Scholar 

  159. Sinha, P., Balas, R., Krueger, L., & Wade, A. (2012). Fate and transport evaluation of potential leaching risks from cadmium telluride photovoltaics. Environmental Toxicology and Chemistry, 31, 1670–1675. https://doi.org/10.1002/etc.1865

    Article  Google Scholar 

  160. Labor, U. S. D. o. Occupational safety and health administration <https://www.osha.gov/solvents>.

  161. Li, J., et al. (2020). Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nature Communications, 11, 310. https://doi.org/10.1038/s41467-019-13910-y

    Article  Google Scholar 

  162. Natasha, et al. (2020). Risk assessment and biophysiochemical responses of spinach to foliar application of lead oxide nanoparticles: A multivariate analysis. Chemosphere, 245, 125605. https://doi.org/10.1016/j.chemosphere.2019.125605

    Article  Google Scholar 

  163. Conings, B., Babayigit, A., & Boyen, H.-G. (2019). Fire safety of lead halide perovskite photovoltaics. ACS Energy Letters, 4, 873–878. https://doi.org/10.1021/acsenergylett.9b00546

    Article  Google Scholar 

  164. (ed US Environmental Protection Agency) (1994).

    Google Scholar 

  165. Townsend, T., Y. C. J., Tolaymat, T. (ed University of Florida) (2003).

    Google Scholar 

  166. Alsalloum, A. Y., et al. (2020). Low-temperature crystallization enables 21.9% efficient single-crystal MAPbI3 inverted perovskite solar cells. ACS Energy Letters, 5, 657–662. https://doi.org/10.1021/acsenergylett.9b02787

    Article  Google Scholar 

  167. Boopathi, K. M., et al. (2017). Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites. Journal of Materials Chemistry A, 5, 20843–20850. https://doi.org/10.1039/c7ta06679a

    Article  Google Scholar 

  168. Chen, M., et al. (2019). Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nature Communications, 10, 16. https://doi.org/10.1038/s41467-018-07951-y

    Article  Google Scholar 

  169. Hu, W., et al. (2020). Bulk heterojunction gifts bismuth-based lead-free perovskite solar cells with record efficiency. Nano Energy, 68. https://doi.org/10.1016/j.nanoen.2019.104362

  170. Ito, N., et al. (2018). Mixed Sn-Ge perovskite for enhanced perovskite solar cell performance in air. Journal of Physical Chemistry Letters, 9, 1682–1688. https://doi.org/10.1021/acs.jpclett.8b00275

    Article  Google Scholar 

  171. Jain, S. M., et al. (2018). An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy, 49, 614–624. https://doi.org/10.1016/j.nanoen.2018.05.003

    Article  Google Scholar 

  172. Jeon, N. J., et al. (2018). A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nature Energy, 3, 682–689. https://doi.org/10.1038/s41560-018-0200-6

    Article  Google Scholar 

  173. Llanos, M., Yekani, R., Demopoulos, G. P., & Basu, N. (2020). Alternatives assessment of perovskite solar cell materials and their methods of fabrication. Renewable and Sustainable Energy Reviews, 133. https://doi.org/10.1016/j.rser.2020.110207

  174. Lyu, M., et al. (2016). Highly compact and uniform CH3NH3Sn0.5Pb0.5I3 films for efficient panchromatic planar perovskite solar cells. Science Bulletin, 61, 1558–1562. https://doi.org/10.1007/s11434-016-1147-2

    Article  Google Scholar 

  175. Qiu, J., Xia, Y., Chen, Y., & Huang, W. (2019). Management of crystallization kinetics for efficient and stable low-dimensional ruddlesden-popper (lDRP) lead-free perovskite solar cells. Advanced Science (Weinh), 6, 1800793. https://doi.org/10.1002/advs.201800793

    Article  Google Scholar 

  176. Singh, A., et al. (2018). Photovoltaic performance of vapor-assisted solution-processed layer polymorph of Cs3Sb2I9. ACS Applied Materials & Interfaces, 10, 2566–2573. https://doi.org/10.1021/acsami.7b16349

    Article  Google Scholar 

  177. Li, Z., et al. (2021). Sulfonated graphene aerogels enable safe-to-use flexible perovskite solar modules. Advanced Energy Materials, 12. https://doi.org/10.1002/aenm.202103236

  178. Li, X., et al. (2021). On-device lead-absorbing tapes for sustainable perovskite solar cells. Nature Sustainability, 4, 1038–1041. https://doi.org/10.1038/s41893-021-00789-1

    Article  Google Scholar 

  179. Jiang, Y., et al. (2019). Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nature Energy, 4, 585–593. https://doi.org/10.1038/s41560-019-0406-2

    Article  Google Scholar 

  180. Li, X., et al. (2020). On-device lead sequestration for perovskite solar cells. Nature, 578, 555–558. https://doi.org/10.1038/s41586-020-2001-x

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Number 38050.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the US Department of Energy (DOE) under Contract No. DE-AC36-08GO28308.

The views expressed in the article do not necessarily represent the views of the DOE or the US government. The US government retains, and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for US government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelique M. Montgomery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montgomery, A.M., Doumon, N.Y., Torrence, C., Schelhas, L.T., Stein, J.S. (2023). “Metal Halide Perovskite Solar Modules: The Challenge of Upscaling and Commercializing This Technology”. In: Nie, W., Iniewski, K.(. (eds) Metal-Halide Perovskite Semiconductors. Springer, Cham. https://doi.org/10.1007/978-3-031-26892-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26892-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26891-5

  • Online ISBN: 978-3-031-26892-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics