Skip to main content

Microbial Communities

  • Chapter
  • First Online:
Brief Lessons in Microbiology
  • 377 Accesses

Abstract

Microorganisms are very social and can form complex communities. Microbial communities are often organized into elaborate structures, called biofilms, which have been compared to futuristic human cities. Besides protection from the surrounding environment, biofilms allow microbes to specialize on specific tasks similar to cells in the bodies of the higher organisms. Close contact between microbes in biofilms allows easier cell-to-cell communication and exchange of genetic information. Biofilms are often composed of not only single microbial species, but also microorganisms from all domains of life. Biofilms of pathogenic microbes represent a particular problem in healthcare because of their increased resistance against the immune system and antibiotics. Novel drugs targeting biofilms can therefore aid the ongoing fight against pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 44.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulkareem A, Abdulbaqi H, Gul S, Milward M, Chasib N, Alhashimi R (2021) Classic vs. novel antibacterial approaches for eradicating dental biofilm as adjunct to periodontal debridement: an evidence-based overview. Antibiotics (Basel) 11(1)

    Google Scholar 

  • Adam B, Baillie GS, Douglas LJ (2002) Mixed species biofilms of Candida albicans and Staphylococcus epidermidis. J Med Microbiol 51(4):344–349

    Article  PubMed  Google Scholar 

  • Anderson MS, Garcia EC, Cotter PA (2014) Kind discrimination and competitive exclusion mediated by contact-dependent growth inhibition systems shape biofilm community structure. PLoS Pathog 10(4):e1004076

    Article  PubMed  PubMed Central  Google Scholar 

  • Armbruster CR, Wolter DJ, Mishra M, Hayden HS, Radey MC, Merrihew G, MacCoss MJ, Burns J, Wozniak DJ, Parsek MR, Hoffman LR (2016) Staphylococcus aureus protein a mediates interspecies interactions at the cell surface of Pseudomonas aeruginosa. MBio 7(3)

    Google Scholar 

  • Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovács Á (2021) Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol 19(9):600–614

    Article  CAS  PubMed  Google Scholar 

  • Balcázar JL, Subirats J, Borrego CM (2015) The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol 6:1216

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatt P, Bhatt K, Huang Y, Li J, Wu S, Chen S (2022) Biofilm formation in xenobiotic-degrading microorganisms. Crit Rev Biotechnol:1–21

    Google Scholar 

  • Bové M, Bao X, Sass A, Crabbé A, Coenye T (2021) The quorum-sensing inhibitor Furanone C-30 rapidly loses its tobramycin-potentiating activity against Pseudomonas aeruginosa biofilms during experimental evolution. Antimicrob Agents Chemother 65(7):e0041321

    Article  PubMed  Google Scholar 

  • Cendra MDM, Torrents E (2021) Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol Adv 49:107734

    Article  CAS  PubMed  Google Scholar 

  • Chadha J, Harjai K, Chhibber S (2022) Repurposing phytochemicals as anti-virulent agents to attenuate quorum sensing-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Microb Biotechnol 15(6):1695–1718

    Article  PubMed  Google Scholar 

  • Crabbé A, Jensen P, Bjarnsholt T, Coenye T (2019) Antimicrobial tolerance and metabolic adaptations in microbial biofilms. Trends Microbiol 27(10):850–863

    Article  PubMed  Google Scholar 

  • Dostert M, Trimble MJ, Hancock REW (2021) Antibiofilm peptides: overcoming biofilm-related treatment failure. RSC Adv 11(5):2718–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dragoš A, Kiesewalter H, Martin M, Hsu CY, Hartmann R, Wechsler T, Eriksen C, Brix S, Drescher K, Stanley-Wall N, Kümmerli R, Kovács Á (2018) Division of labor during biofilm matrix production. Curr Biol 28(12):1903–1913.e1905

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumitrache A, Klingeman DM, Natzke J, Rodriguez M, Giannone RJ, Hettich RL, Davison BH, Brown SD (2017) Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells. Sci Rep 7:43583

    Article  PubMed  PubMed Central  Google Scholar 

  • Eberl L, Tümmler B (2004) Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation. Int J Med Microbiol 294(2–3):123–131

    Article  CAS  PubMed  Google Scholar 

  • Flemming HC, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S (2022) The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol

    Google Scholar 

  • Gheorghita AA, Li YE, Kitova EN, Bui DT, Pfoh R, Low KE, Whitfield GB, Walvoort MTC, Zhang Q, Codée JDC, Klassen JS, Howell PL (2022) Structure of the AlgKX modification and secretion complex required for alginate production and biofilm attachment in Pseudomonas aeruginosa. Nat Commun 13(1):7631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghorbani H, Memar MY, Sefidan FY, Yekani M, Ghotaslou R (2017) In vitro synergy of antibiotic combinations against planktonic and biofilm Pseudomonas aeruginosa. GMS Hyg Infect Control 12:Doc17

    PubMed  PubMed Central  Google Scholar 

  • González A, Fillat MF, Lanas Á (2018) Transcriptional regulators: valuable targets for novel antibacterial strategies. Future Med Chem 10(5):541–560

    Article  PubMed  Google Scholar 

  • Gotschlich A, Huber B, Geisenberger O, Tögl A, Steidle A, Riedel K, Hill P, Tümmler B, Vandamme P, Middleton B, Camara M, Williams P, Hardman A, Eberl L (2001) Synthesis of multiple N-acylhomoserine lactones is wide-spread among the members of the Burkholderia cepacia complex. Syst Appl Microbiol 24(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Harriott MM, Noverr MC (2011) Importance of Candida-bacterial polymicrobial biofilms in disease. Trends Microbiol 19(11):557–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrmann G, Yang L, Wu H, Song Z, Wang H, Høiby N, Ulrich M, Molin S, Riethmüller J, Döring G (2010) Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J Infect Dis 202(10):1585–1592

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K (2021) Diverse LXG toxin and antitoxin systems specifically mediate intraspecies competition in Bacillus subtilis biofilms. PLoS Genet 17(7):e1009682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong EF, Tsui C, Kucharíková S, Andes D, Van Dijck P, Jabra-Rizk MA (2016) Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix. MBio 7(5)

    Google Scholar 

  • Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M (2013) Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci U S A 110(3):1059–1064

    Article  CAS  PubMed  Google Scholar 

  • Leinweber A, Fredrik Inglis R, Kümmerli R (2017) Cheating fosters species co-existence in well-mixed bacterial communities. ISME J 11(5):1179–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv X, Wang L, Mei A, Xu Y, Ruan X, Wang W, Shao J, Yang D, Dong X (2022) Recent nanotechnologies to overcome the bacterial biofilm matrix barriers. Small e2206220

    Google Scholar 

  • Park S, Sauer K (2022) Controlling biofilm development through cyclic di-GMP signaling. Adv Exp Med Biol 1386:69–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan R, Singh AK, Singh S, Chakravortty D, Das D (2022) Enzymatic dispersion of biofilms: an emerging biocatalytic avenue to combat biofilm-mediated microbial infections. J Biol Chem 298(9):102352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedel K, Hentzer M, Geisenberger O, Huber B, Steidle A, Wu H, Høiby N, Givskov M, Molin S, Eberl L (2001) N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology (Reading) 147(Pt 12):3249–3262

    Article  CAS  PubMed  Google Scholar 

  • Römling U, Balsalobre C (2012) Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 272(6):541–561

    Article  PubMed  Google Scholar 

  • Sadiq FA, Hansen MF, Burmølle M, Heyndrickx M, Flint S, Lu W, Chen W, Zhang H (2022) Trans-kingdom interactions in mixed biofilm communities. FEMS Microbiol Rev 46(5)

    Google Scholar 

  • Sauer K, Stoodley P, Goeres DM, Hall-Stoodley L, Burmølle M, Stewart PS, Bjarnsholt T (2022) The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol 20(10):608–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scoffield JA, Duan D, Zhu F, Wu H (2017) A commensal streptococcus hijacks a Pseudomonas aeruginosa exopolysaccharide to promote biofilm formation. PLoS Pathog 13(4):e1006300

    Article  PubMed  PubMed Central  Google Scholar 

  • Trizna EY, Yarullina MN, Baidamshina DR, Mironova AV, Akhatova FS, Rozhina EV, Fakhrullin RF, Khabibrakhmanova AM, Kurbangalieva AR, Bogachev MI, Kayumov AR (2020) Bidirectional alterations in antibiotics susceptibility in Staphylococcus aureus-Pseudomonas aeruginosa dual-species biofilm. Sci Rep 10(1):14849

    Article  PubMed  PubMed Central  Google Scholar 

  • Valentin JDP, Straub H, Pietsch F, Lemare M, Ahrens CH, Schreiber F, Webb JS, van der Mei HC, Ren Q (2022) Role of the flagellar hook in the structural development and antibiotic tolerance of Pseudomonas aeruginosa biofilms. ISME J 16(4):1176–1186

    Article  CAS  PubMed  Google Scholar 

  • Warrier A, Satyamoorthy K, Murali TS (2021) Quorum-sensing regulation of virulence factors in bacterial biofilm. Future Microbiol 16:1003–1021

    Article  CAS  PubMed  Google Scholar 

  • Yadav J, Das S, Singh S, Jyoti A, Srivastava VK, Sharma V, Kumar S, Kaushik S (2022) Deciphering the role of S-adenosyl homocysteine nucleosidase in quorum sensing mediated biofilm formation. Curr Protein Pept Sci 23(4):211–225

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Juhas, M. (2023). Microbial Communities. In: Brief Lessons in Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-031-29544-7_4

Download citation

Publish with us

Policies and ethics