Skip to main content

Raw or Cooked? Object Detection on RAW Images

  • Conference paper
  • First Online:
Image Analysis (SCIA 2023)

Abstract

Images fed to a deep neural network have in general undergone several handcrafted image signal processing (ISP) operations, all of which have been optimized to produce visually pleasing images. In this work, we investigate the hypothesis that the intermediate representation of visually pleasing images is sub-optimal for downstream computer vision tasks compared to the RAW image representation. We suggest that the operations of the ISP instead should be optimized towards the end task, by learning the parameters of the operations jointly during training. We extend previous works on this topic and propose a new learnable operation that enables an object detector to achieve superior performance when compared to both previous works and traditional RGB images. In experiments on the open PASCALRAW dataset, we empirically confirm our hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Åström, F., Zografos, V., Felsberg, M.: Density driven diffusion. In: Kämäräinen, J.-K., Koskela, M. (eds.) SCIA 2013. LNCS, vol. 7944, pp. 718–730. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38886-6_67

    Chapter  Google Scholar 

  2. Bayer, B.E.: Color imaging array. United States Patent 3,971,065 (1976)

    Google Scholar 

  3. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  4. Buckler, M., Jayasuriya, S., Sampson, A.: Reconfiguring the imaging pipeline for computer vision. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 975–984 (2017)

    Google Scholar 

  5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  6. Ciufolini, I., Paolozzi, A.: Mathematical prediction of the time evolution of the COVID-19 pandemic in Italy by a gauss error function and monte Carlo simulations. Eur. Phys. J. Plus 135(4), 355 (2020)

    Article  Google Scholar 

  7. Condat, L.: A simple, fast and efficient approach to denoisaicking: Joint demosaicking and denoising. In: 2010 IEEE International Conference on Image Processing, pp. 905–908. IEEE (2010)

    Google Scholar 

  8. Dai, L., Liu, X., Li, C., Chen, J.: AWNet: attentive wavelet network for image ISP. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 185–201. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_11

    Chapter  Google Scholar 

  9. Dubois, E.: Filter design for adaptive frequency-domain Bayer demosaicking. In: 2006 International Conference on Image Processing, pp. 2705–2708. IEEE (2006)

    Google Scholar 

  10. Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.: Practical poissonian-gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process. 17(10), 1737–1754 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  12. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415 (2016)

  16. Hirakawa, K., Parks, T.W.: Adaptive homogeneity-directed demosaicing algorithm. IEEE Trans. Image Process. 14(3), 360–369 (2005)

    Article  Google Scholar 

  17. Hong, Y., Wei, K., Chen, L., Fu, Y.: Crafting object detection in very low light. In: BMVC, vol. 1, p. 3 (2021)

    Google Scholar 

  18. HP, A.W., Prasetyo, H., Guo, J.M.: Autoencoder-based image companding. In: 2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan), pp. 1–2. IEEE (2020)

    Google Scholar 

  19. Ignatov, A., Van Gool, L., Timofte, R.: Replacing mobile camera ISP with a single deep learning model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 536–537 (2020)

    Google Scholar 

  20. Krawczyk, G., Myszkowski, K., Seidel, H.P.: Lightness perception in tone reproduction for high dynamic range images. In: Computer Graphics Forum, vol. 24, pp. 635–646. Amsterdam: North Holland, 1982- (2005)

    Google Scholar 

  21. Kriesel, D.: Traue keinem scan, den du nicht selbst gefälscht hast. Mitteilungen der Deutschen Mathematiker-Vereinigung 22(1), 30–34 (2014)

    Article  Google Scholar 

  22. Langseth, R., Gaddam, V.R., Stensland, H.K., Griwodz, C., Halvorsen, P.: An evaluation of debayering algorithms on GPU for real-time panoramic video recording. In: 2014 IEEE International Symposium on Multimedia, pp. 110–115. IEEE (2014)

    Google Scholar 

  23. Li, X., Gunturk, B., Zhang, L.: Image demosaicing: a systematic survey. In: Visual Communications and Image Processing 2008, vol. 6822, pp. 489–503. SPIE (2008)

    Google Scholar 

  24. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  25. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  26. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  27. Liu, Z., et al.: SWIN transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  28. Malvar, H.S., He, L.W., Cutler, R.: High-quality linear interpolation for demosaicing of bayer-patterned color images. In: 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. iii–485. IEEE (2004)

    Google Scholar 

  29. Meng, D., et al.: Conditional DETR for fast training convergence. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3651–3660 (2021)

    Google Scholar 

  30. Morawski, I., Chen, Y.A., Lin, Y.S., Dangi, S., He, K., Hsu, W.H.: GENISP: neural ISP for low-light machine cognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 630–639 (2022)

    Google Scholar 

  31. Mujtaba, N., Khan, I.R., Khan, N.A., Altaf, M.A.B.: Efficient flicker-free tone mapping of HDR videos. In: 2022 IEEE 24th International Workshop on Multimedia Signal Processing (MMSP), pp. 01–06. IEEE (2022)

    Google Scholar 

  32. Olli Blom, M., Johansen, T.: End-to-end object detection on raw camera data (2021)

    Google Scholar 

  33. Omid-Zohoor, A., Ta, D., Murmann, B.: Pascalraw: raw image database for object detection (2014)

    Google Scholar 

  34. Poynton, C.: Digital video and HD: Algorithms and Interfaces. Elsevier (2012)

    Google Scholar 

  35. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  36. Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 267–276 (2002)

    Google Scholar 

  37. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  38. Riechert, M.: Rawpy (2022). https://github.com/letmaik/rawpy

  39. Shekhar Tripathi, A., Danelljan, M., Shukla, S., Timofte, R., Van Gool, L.: Transform your smartphone into a DSLR camera: Learning the ISP in the wild. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision. ECCV 2022. ECCV 2022. LNCS, pp. 625–641. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20068-7_36

  40. Suma, R., Stavropoulou, G., Stathopoulou, E.K., Van Gool, L., Georgopoulos, A., Chalmers, A.: Evaluation of the effectiveness of HDR tone-mapping operators for photogrammetric applications. Virtual Archaeol. Rev. 7(15), 54–66 (2016)

    Article  Google Scholar 

  41. Sun, Z., Cao, S., Yang, Y., Kitani, K.M.: Rethinking transformer-based set prediction for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3611–3620 (2021)

    Google Scholar 

  42. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636 (2019)

    Google Scholar 

  43. Wang, Y., Zhang, X., Yang, T., Sun, J.: Anchor DETR: query design for transformer-based detector. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2567–2575 (2022)

    Google Scholar 

  44. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  45. Yeo, I.K., Johnson, R.A.: A new family of power transformations to improve normality or symmetry. Biometrika 87(4), 954–959 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yoshimura, M., Otsuka, J., Irie, A., Ohashi, T.: Dynamicisp: dynamically controlled image signal processor for image recognition. arXiv preprint arXiv:2211.01146 (2022)

  47. Yoshimura, M., Otsuka, J., Irie, A., Ohashi, T.: Rawgment: noise-accounted raw augmentation enables recognition in a wide variety of environments. arXiv preprint arXiv:2210.16046 (2022)

  48. Zhang, H., et al.: Dino: DETR with improved denoising anchor boxes for end-to-end object detection. arXiv preprint arXiv:2203.03605 (2022)

  49. Zhang, X., Zhang, L., Lou, X.: A raw image-based end-to-end object detection accelerator using hog features. IEEE Trans. Circuits Syst. I: Regular Papers 69(1), 322–333 (2021)

    Article  Google Scholar 

  50. Zhang, Z., Wang, H., Liu, M., Wang, R., Zhang, J., Zuo, W.: Learning raw-to-srgb mappings with inaccurately aligned supervision. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4348–4358 (2021)

    Google Scholar 

  51. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  52. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

Download references

Acknowledgements

This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Ljungbergh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ljungbergh, W., Johnander, J., Petersson, C., Felsberg, M. (2023). Raw or Cooked? Object Detection on RAW Images. In: Gade, R., Felsberg, M., Kämäräinen, JK. (eds) Image Analysis. SCIA 2023. Lecture Notes in Computer Science, vol 13885. Springer, Cham. https://doi.org/10.1007/978-3-031-31435-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31435-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31434-6

  • Online ISBN: 978-3-031-31435-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics