Skip to main content

Modeling Farmers’ Adoption Potential to New Bioenergy Crops: An Agent-Based Approach

  • Conference paper
  • First Online:
Proceedings of the 2022 Conference of The Computational Social Science Society of the Americas (CSSSA 2022)

Abstract

The use of fossil fuels is the primary source of greenhouse gas emissions but there are alternatives to these especially in the form of biofuels, fuels derived from bioenergy crops. This paper aims to determine farmers’ potential adoption rates of newly introduced bioenergy crops with a specific example of carinata in the state of Georgia. The determination is done using an agent-based modeling technique with two principal assumptions—farmers are profit maximizer and they are influenced by neighboring farmers. Two diffusion parameters (traditional and expansion) are followed along with two willingness (high and low) scenarios to switch at varying production economics to carinata and other prominent traditional field crops (cotton, peanuts, corn) in the study region. We find that a contract prices around $9, $8 and $7 can be a viable option for encouraging farmers to adopt carinata in low, average, and high profit conditions, respectively. Expansion diffusion (that diffuses all over the geographical area), rather than centered to the few places like traditional diffusion at the early stage of adoption in conjunction with higher willingness conditions influences higher adoption rates in the short-term. As such, the model can be used to understand the behavioral economics of carinata in Georgia and beyond, as well as offering a potential tool to study similar bioenergy crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alam, A., Dwivedi, P.: Modeling site suitability and production potential of carinata-based sustainable jet fuel in the southeastern United States. J. Clean. Prod. 239, 117817 (2019)

    Article  Google Scholar 

  2. Alexander, P., Moran, D., Rounsevell, M.D.A., Smith, P.: Modelling the perennial energy crop market: the role of spatial diffusion. J. R. Soc. Interface 10(88), 20130656 (2013)

    Article  Google Scholar 

  3. Anand, M., Miao, R., Khanna, M.: Adopting bioenergy crops: does farmers’ attitude toward loss matter? Agric. Econ. 50(4), 435–450 (2019)

    Article  Google Scholar 

  4. Berger, T.: Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis. Agric. Econ. 25(2–3), 245–260 (2001)

    Google Scholar 

  5. Berger, T., Troost, C.: Agent-based modelling of climate adaptation and mitigation options in agriculture. J. Agric. Econ. 65(2), 323–348 (2014)

    Article  Google Scholar 

  6. Bosch, D.D., Sheridan, J.M., Lowrance, R.R., Hubbard, R.K., Strickland, T.C., Feyereisen, G.W., Sullivan, D.G.: Little River experimental watershed database. Water Resour. Res. 43(9), W09470 (2007)

    Article  ADS  Google Scholar 

  7. Brown, C., Bakam, I., Smith, P., Matthews, R.: An agent-based modelling approach to evaluate factors influencing bioenergy crop adoption in north-east Scotland. GCB Bioenergy 8(1), 226–244 (2016)

    Article  Google Scholar 

  8. Chen, X., Önal, H.: Modeling agricultural supply response using mathematical programming and crop mixes. Am. J. Agr. Econ. 94(3), 674–686 (2012)

    Article  Google Scholar 

  9. Crooks, A.T., Malleson, N., Manley, E., Heppenstall, A.: Agent-based modelling and geographical information systems: a practical primer. SAGE Publications, London, UK (2019)

    Book  Google Scholar 

  10. Ding, D., Bennett, D., Secchi, S.: Investigating impacts of alternative crop market scenarios on land use change with an agent-based model. Land 4(4), 1110–1137 (2015)

    Article  Google Scholar 

  11. El Akkari, M., Réchauchère, O., Bispo, A., Gabrielle, B., Makowski, D.: A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes. Sci. Rep. 8(1), 8563 (2018)

    Article  ADS  Google Scholar 

  12. Fewell, J.E., Bergtold, J.S., Williams, J.R.: Farmers’ willingness to contract switchgrass as a cellulosic bioenergy crop in Kansas. Energy Econ. 55, 292–302 (2016)

    Article  Google Scholar 

  13. Field, J.L., Zhang, Y., Marx, E., Boote, K.J., Easter, M., George, S., Hoghooghi, N., Johnston, G., Masum, F.H., Mulvaney, M.J., Paustian, K., Seepaul, R., Swan, A., Williams, S., Wright, D., Dwivedi, P.: Modeling yield, biogenic emissions, and carbon sequestration in southeastern cropping systems with winter carinata. Front. Energy Res. 323 (2022)

    Google Scholar 

  14. Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand, T., Heinz, S., Huse, G., Huth, A., Jepsen, J., Jorgensen, C., Mooij, W., Muller, B., Pe’er, G., Piou, C., Railsback, S., Robbins, A., Robbins, M., Rossmanith, E., Ruger, N., Strand, E., Souissi, S., Stillman, R., Vabo, R., Visser, U., Deangelis, D.: A standard protocol for describing individual-based and agent-based models. Ecol. Model. 198(1–2), 115–126 (2006)

    Article  Google Scholar 

  15. Guillem, E.E., Murray-Rust, D., Robinson, D.T., Barnes, A., Rounsevell, M.D.A.: Modelling farmer decision-making to anticipate tradeoffs between provisioning ecosystem services and biodiversity. Agric. Syst. 137, 12–23 (2015)

    Article  Google Scholar 

  16. Happe, K., Kellermann, K., Balmann, A.: Agent-based analysis of agricultural policies: an illustration of the agricultural policy simulator AgriPoliS, its adaptation and behavior. Ecol. Soc. 11(1), 49 (2006)

    Article  Google Scholar 

  17. Hoghooghi, N., Bosch, D.D., Bledsoe, B.P.: Assessing hydrologic and water quality effects of land use conversion to Brassica carinata as a winter biofuel crop in the southeastern coastal plain of Georgia, USA using the SWAT model. GCB Bioenergy 13(3), 473–492 (2021)

    Article  Google Scholar 

  18. Huang, S., Hu, G., Chennault, C., Su, L., Brandes, E., Heaton, E., Schulte, L., Wang, L., Tyndall, J.: Agent-based modeling of bioenergy crop adoption and farmer decision-making. Energy 115, 1188–1201 (2016)

    Article  Google Scholar 

  19. ICAO Environmental Report 2016, https://doi.org/10.1017/CBO9781107415324.004. Last acceded 30 Oct 2022

  20. Jin, E., Mendis, G.P., Sutherland, J.W.: Spatial agent-based modeling for dedicated energy crop adoption and cellulosic biofuel commercialization. Biofuels, Bioprod. Biorefin. 13(3), 618–634 (2019)

    Article  Google Scholar 

  21. Jordan-Bychkov, T.G., Domosh, M., Neumann, R.P., Price, P.L.: The Human Mosaic: A Thematic Introduction to Cultural Geography, 2nd edn. Macmillan, London, UK (2012)

    Google Scholar 

  22. Karami, O., Dwivedi, P., Lamb, M., Field, J.L.: Economics of crop rotations with and without carinata for sustainable aviation fuel production in the SE United States. Frontiers Energy Res. 10, 461 (2022)

    Article  Google Scholar 

  23. Khanna, M., Louviere, J., Yang, X.: Motivations to grow energy crops: the role of crop and contract attributes. Agric. Econ. 48(3), 263–277 (2017)

    Article  Google Scholar 

  24. Miao, R., Khanna, M.: Are bioenergy crops riskier than corn? Implications for biomass price. Choices: Mag. Food, Farm, Resour. Issues 29(1), 1–6 (2014).

    Google Scholar 

  25. Nolan, J., Parker, D., van Kooten, G.C., Berger, T.: An overview of computational modeling in agricultural and resource economics. Can. J. Agric. Econ. 57(4), 417–429 (2009)

    Article  Google Scholar 

  26. Schulze, J., Gawel, E., Nolzen, H., Weise, H., Frank, K.: The expansion of short rotation forestry: characterization of determinants with an agent-based land use model. GCB Bioenergy 9(6), 1042–1056 (2017)

    Article  Google Scholar 

  27. Seepaul, R., George, S., Small, I., Marois, J., Wright, D.: Best Management Practices for Carinata Production in the Southeast. https://sparc-cap.org/wp-content/uploads/2018/03/Carinata-best-management-practices.pdf. Last acceded 30 Oct 2022

  28. Seepaul, R., Kumar, S., Iboyi, J.E., Bashyal, M., Stansly, T.L., Bennett, R., Boote, K.J., Mulvaney, M.J., Small, I.M., George, S., Wright, D.L.: Brassica carinata: biology and agronomy as a biofuel crop. GCB Bioenergy 13, 582–599 (2021)

    Article  Google Scholar 

  29. Singh, B.P.: Biofuel crop sustainability baradigm. In: Singh, B.P. (ed) Biofuel Crop Sustainability, pp. 3–29, Wiley, London, England (2013)

    Google Scholar 

  30. Ullah, K.M., Dwivedi, P.: Ascertaining land allocation decisions of farmers about the adoption of carinata as a potential crop for sustainable aviation fuel production in the southern United States. GCB Bioenergy 14(7), 824–839 (2022)

    Article  Google Scholar 

  31. US Department of Transportation, Airline fuel cost and consumption, https://www.transtats.bts.gov/fuel.asp. Last acceded 30 Oct 2022

  32. USDA/NASS, Cropland Data Layer, https://nassgeodata.gmu.edu/CropScape/. Last acceded 30 Oct 2022

  33. USDA/NASS, State agriculture overview for Georgia. Accessed 12 July 2022, from https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=GEORGIA. Last acceded 30 Oct 2022

  34. USDA Economic Research Service, Commodity Costs and Returns, https://www.ers.usda.gov/data-products/commodity-costs-and-returns/. Last acceded 30 Oct 2022

  35. Yadav, P., Priyanka, P., Kumar, D., Yadav, A., Yadav, K.: Bioenergy crops: Recent advances and future outlook. In: Rastegari, A.A., Yadav, A.N., Gupta, A. (eds.) Prospects of Renewable Bioprocessing in Future Energy Systems, pp. 315–335. Springer, New York, NY. (2019)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazi Ullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ullah, K., Crooks, A. (2023). Modeling Farmers’ Adoption Potential to New Bioenergy Crops: An Agent-Based Approach. In: Yang, Z., Núñez-Corrales, S. (eds) Proceedings of the 2022 Conference of The Computational Social Science Society of the Americas. CSSSA 2022. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-031-37553-8_5

Download citation

Publish with us

Policies and ethics