Skip to main content

L2G2G: A Scalable Local-to-Global Network Embedding with Graph Autoencoders

  • Conference paper
  • First Online:
Complex Networks & Their Applications XII (COMPLEX NETWORKS 2023)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1141))

Included in the following conference series:

  • 957 Accesses

Abstract

For analysing real-world networks, graph representation learning is a popular tool. These methods, such as a graph autoencoder (GAE), typically rely on low-dimensional representations, also called embeddings, which are obtained through minimising a loss function; these embeddings are used with a decoder for downstream tasks such as node classification and edge prediction. While GAEs tend to be fairly accurate, they suffer from scalability issues. For improved speed, a Local2Global approach, which combines graph patch embeddings based on eigenvector synchronisation, was shown to be fast and achieve good accuracy. Here we propose L2G2G, a Local2Global method which improves GAE accuracy without sacrificing scalability. This improvement is achieved by dynamically synchronising the latent node representations, while training the GAEs. It also benefits from the decoder computing an only local patch loss. Hence, aligning the local embeddings in each epoch utilises more information from the graph than a single post-training alignment does, while maintaining scalability. We illustrate on synthetic benchmarks, as well as real-world examples, that L2G2G achieves higher accuracy than the standard Local2Global approach and scales efficiently on the larger data sets. We find that for large and dense networks, it even outperforms the slow, but assumed more accurate, GAEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Guyon, I., Dror, G., Lemaire, V., Taylor, G., Silver, D., (eds.) Proceedings of ICML Workshop on Unsupervised and Transfer Learning, Proceedings of Machine Learning Research, vol. 27, pp. 37–49. PMLR, Bellevue, Washington, USA (2012)

    Google Scholar 

  2. Bayer, A., Chowdhury, A., Segarra, S.: Label propagation across graphs: node classification using graph neural tangent kernels. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5483–5487. IEEE (2022)

    Google Scholar 

  3. Bojchevski, A., Günnemann, S.: Deep gaussian embedding of graphs: unsupervised inductive learning via ranking. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=r1ZdKJ-0W

  4. Bojchevski, A., et al.: Scaling graph neural networks with approximate PageRank. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM (2020)

    Google Scholar 

  5. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)

  6. Chen, J., Ma, T., Xiao, C.: FastGCN: fast learning with graph convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247 (2018)

  7. Chen, M., Wei, Z., Ding, B., Li, Y., Yuan, Y., Du, X., Wen, J.: Scalable graph neural networks via bidirectional propagation. CoRR abs/2010.15421 (2020). https://arxiv.org/abs/2010.15421

  8. Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional networks. In: International Conference on Machine Learning, pp. 1725–1735. PMLR (2020)

    Google Scholar 

  9. Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-GCN. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM (2019)

    Google Scholar 

  10. Cucuringu, M., Lipman, Y., Singer, A.: Sensor network localization by eigenvector synchronization over the Euclidean group. ACM Trans. Sen. Netw. 8(3), 1–42 (2012)

    Article  Google Scholar 

  11. Cucuringu, M., Singer, A., Cowburn, D.: Eigenvector synchronization, graph rigidity and the molecule problem. Inf. Infer. 1(1), 21–67 (2012)

    MathSciNet  Google Scholar 

  12. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  13. Hamilton, W.L.: Graph Representation Learning. Morgan & Claypool Publishers (2020)

    Google Scholar 

  14. He, C., et al.: FedGraphNN: a federated learning system and benchmark for graph neural networks. CoRR abs/2104.07145 (2021). https://arxiv.org/abs/2104.07145

  15. Jeub, L.G., Colavizza, G., Dong, X., Bazzi, M., Cucuringu, M.: Local2Global: a distributed approach for scaling representation learning on graphs. Mach. Learn. 112(5), 1663–1692 (2023)

    Article  MathSciNet  Google Scholar 

  16. Jeub, L.G.S.: Local2Global github package. Github (2021). https://github.com/LJeub/Local2Global

  17. Karrer, B., Newman, M.E.J.: Stochastic blockmodels and community structure in networks. Phys. Rev. E 83(1), 016107 (2011)

    Article  MathSciNet  Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (Poster) (2015)

    Google Scholar 

  19. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016)

  20. Pan, Q., Zhu, Y.: FedWalk: communication efficient federated unsupervised node embedding with differential privacy. arXiv preprint arXiv:2205.15896 (2022)

  21. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM (2014)

    Google Scholar 

  22. Salha, G., Hennequin, R., Remy, J.B., Moussallam, M., Vazirgiannis, M.: FastGAE: scalable graph autoencoders with stochastic subgraph decoding. Neural Netw. 142, 1–19 (2021)

    Article  Google Scholar 

  23. Simonovsky, M., Komodakis, N.: GraphVAE: towards generation of small graphs using variational autoencoders. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11139, pp. 412–422. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01418-6_41

    Chapter  Google Scholar 

  24. Tang, L., Liu, H.: Leveraging social media networks for classification. Data Min. Knowl. Discov. 23(3), 447–478 (2011)

    Article  MathSciNet  Google Scholar 

  25. Tsitsulin, A., Palowitch, J., Perozzi, B., Müller, E.: Graph clustering with graph neural networks. arXiv preprint arXiv:2006.16904 (2020)

  26. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: GraphSAINT: graph sampling based inductive learning method. In: International Conference on Learning Representations (2020)

    Google Scholar 

  27. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  28. Zhang, S., Tong, H., Xu, J., Maciejewski, R.: Graph convolutional networks: a comprehensive review. Comput. Soc. Netw. 6(1), 1–23 (2019)

    Article  Google Scholar 

  29. Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., Gu, Q.: Layer-dependent importance sampling for training deep and large graph convolutional networks. In: Advances in neural information processing systems, vol. 32 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stratis Limnios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ouyang, R., Elliott, A., Limnios, S., Cucuringu, M., Reinert, G. (2024). L2G2G: A Scalable Local-to-Global Network Embedding with Graph Autoencoders. In: Cherifi, H., Rocha, L.M., Cherifi, C., Donduran, M. (eds) Complex Networks & Their Applications XII. COMPLEX NETWORKS 2023. Studies in Computational Intelligence, vol 1141. Springer, Cham. https://doi.org/10.1007/978-3-031-53468-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-53468-3_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-53467-6

  • Online ISBN: 978-3-031-53468-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics