Skip to main content

Causal Fermion Systems: A Quantum Space-Time Emerging From an Action Principle

  • Chapter
  • First Online:
Quantum Field Theory and Gravity

Abstract

Causal fermion systems are introduced as a general mathematical framework for formulating relativistic quantum theory. By specializing, we recover earlier notions like fermion systems in discrete space-time, the fermionic projector and causal variational principles. We review how an effect of spontaneous structure formation gives rise to a topology and a causal structure in space-time. Moreover, we outline how to construct a spin connection and curvature, leading to a proposal for a “quantum geometry” in the Lorentzian setting. We review recent numerical and analytical results on the support of minimizers of causal variational principles which reveal a “quantization effect” resulting in a discreteness of space-time. A brief survey is given on the correspondence to quantum field theory and gauge theories.

Mathematics Subject Classification (2010). Primary 51P05, 81T20; Secondary 49Q20, 83C45, 47B50, 47B07.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Baum, Spinor structures and Dirac operators on pseudo-Riemannian manifolds, Bull. Polish Acad. Sci. Math. 33 (1985), no. 3-4, 165–171.

    MathSciNet  MATH  Google Scholar 

  2. J. Bognár, Indefinite inner product spaces, Springer-Verlag, New York, 1974, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78.

    Google Scholar 

  3. L. Bombelli, J. Lee, D. Meyer, and R.D. Sorkin, Space-time as a causal set, Phys. Rev. Lett. 59 (1987), no. 5, 521–524.

    Article  MathSciNet  Google Scholar 

  4. F. Finster, Derivation of local gauge freedom from a measurement principle, arXiv:funct-an/9701002, Photon and Poincare Group (V. Dvoeglazov, ed.), Nova Science Publishers, 1999, pp. 315–325.

    Google Scholar 

  5. F. Finster, The principle of the fermionic projector, hep-th/0001048, hep-th/0202059, hep-th/0210121, AMS/IP Studies in Advanced Mathematics, vol. 35, American Mathematical Society, Providence, RI, 2006.

    Google Scholar 

  6. F. Finster, Fermion systems in discrete space-time—outer symmetries and spontaneous symmetry breaking, arXiv:math-ph/0601039, Adv. Theor. Math. Phys. 11 (2007), no. 1, 91–146.

    MathSciNet  MATH  Google Scholar 

  7. F. Finster, A variational principle in discrete space-time: Existence of minimizers, arXiv:math-ph/0503069, Calc. Var. Partial Differential Equations 29 (2007), no. 4, 431–453.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Finster, An action principle for an interacting fermion system and its analysis in the continuum limit, arXiv:0908.1542 [math-ph] (2009).

    Google Scholar 

  9. F. Finster, From discrete space-time to Minkowski space: Basic mechanisms, methods and perspectives, arXiv:0712.0685 [math-ph], Quantum Field Theory (B. Fauser, J. Tolksdorf, and E. Zeidler, eds.), Birkhäuser Verlag, 2009, pp. 235–259.

    Google Scholar 

  10. F. Finster, Causal variational principles on measure spaces, arXiv:0811.2666 [math-ph], J. Reine Angew. Math. 646 (2010), 141–194.

    Google Scholar 

  11. F. Finster, Entanglement and second quantization in the framework of the fermionic projector, arXiv:0911.0076 [math-ph], J. Phys. A: Math. Theor. 43 (2010), 395302.

    Google Scholar 

  12. F. Finster, The fermionic projector, entanglement, and the collapse of the wave function, arXiv:1011.2162 [quant-ph], to appear in the Proceedings of DICE2010 (2011).

    Google Scholar 

  13. F. Finster, A formulation of quantum field theory realizing a sea of interacting Dirac particles, arXiv:0911.2102 [hep-th], to appear in Lett. Math. Phys (2011).

    Google Scholar 

  14. F. Finster and A. Grotz, A Lorentzian quantum geometry, arXiv:1107.2026 [math-ph] (2011).

    Google Scholar 

  15. F. Finster and D. Schiefeneder, On the support of minimizers of causal variational principles, arXiv:1012.1589 [math-ph] (2010).

    Google Scholar 

  16. P.R. Halmos, Measure theory, Springer, New York, 1974.

    Google Scholar 

  17. H.B. Lawson, Jr. and M.-L. Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989.

    Google Scholar 

  18. S. Pokorski, Gauge field theories, second ed., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Finster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Finster, F., Grotz, A., Schiefeneder, D. (2012). Causal Fermion Systems: A Quantum Space-Time Emerging From an Action Principle. In: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J., Zeidler, E. (eds) Quantum Field Theory and Gravity. Springer, Basel. https://doi.org/10.1007/978-3-0348-0043-3_9

Download citation

Publish with us

Policies and ethics