Skip to main content

V p /V s Anomalies in Dilatant Rock Samples

  • Chapter
Earthquake Prediction and Rock Mechanics

Part of the book series: Contributions to Current Research in Geophysics (CCRG) ((CCRG))

Summary

In a series of triaxial experiments we have measured V p , V s and volumetric strain simultaneously in dilating dry and saturated rocks. For the first time these data permit quantitative comparison of seismic velocities or their ratio and dilatant volumetric strain. In air-dry samples V p /V s decreases by a few per cent at strains of 10−3; in saturated materials with high pore pressure, V p /V s increases by a comparable amount. Decreases in seismic velocity ratio are difficult to generate in initially saturated rocks even with low pore pressures and at strain rates of 10−4/sec. A liquid-vapor transition will not produce a significant drop in V p /V s . If dilatancy and fluid flow are responsible for seismic travel time anomalies prior to earthquakes, our results suggest that such anomalies will occur only in regions where pore fluid source to sink dimensions are of the order of 10 km or more, or in regions where the rocks are not saturated to begin with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.N. Semenov, Variations in the travel time of transverse and longitudinal waves before violent earthquakes, Izv. Phys. Solid Earth 3 (1969), 245.

    Google Scholar 

  2. I.L. Nersesov, A.N. Semenov and I.G. Simbireva, Space-time distribution of the travel time ratios of transverse and longitudinal waves in the Garm area, in The Physical Basis of Foreshocks (Nauka Publ., Moscow 1969).

    Google Scholar 

  3. D.L. Anderson and J.H. Whitcomb. The dilatancy-diffusion model of earthquake prediction, in Proc. of Conf. on Tectonic Problems of the San Andreas Fault System, edited by R.L. Kovach and A. Nur (Stanford University Press, California 1973), p. 417.

    Google Scholar 

  4. Y.P. Aggarwal, L. Sykes, D.W. Simpson and P.G. Richards, Spatial and temporal variations in t s/t p and in P-wave residuals at Blue Mountain Lake, New York: Application to earthquake prediction (Preprint, 1974).

    Google Scholar 

  5. A. Nur, Dilatancy, pore fluids, and premonitory variations of t s/t p travel times, Bull. Seismol. Soc. Amer. 62 (1912), 1217.

    Google Scholar 

  6. C.H. Scholz, L.R. Sykes and Y.P. Aggarwal, Earthquake prediction: A physical basis, Science 181 (1973), 803.

    Article  Google Scholar 

  7. B. Bonner, Shear wave birefringence in dilating granite, Geophys. Res. Lett. 1 (1974), 217. and pers. comms.

    Article  Google Scholar 

  8. D. Tocher, Anisotropy in rocks under simple compression, AGU Trans. 38 (1957), 89.

    Article  Google Scholar 

  9. S. Matsushima, Variation of the elastic wave velocities of rocks in the process of deformation and fracture under high pressure, Dis. Prev. Res. Inst. Bull 32 (1960), 2.

    Google Scholar 

  10. R.E. Thill, Acoustic methods for monitoring failure in rock, in Proc. of the 14th Sympos. on Rock Mech. edited by H.R. Hardy, Jr. and R. Stefanko (Am. Soc. Civil. Eng., N.Y., 1973).

    Google Scholar 

  11. I.N. Gupta, Seismic velocities in rock subjected to axial loading up to shear fracture, J. Geophys. Res. 78 (1973), 6936.

    Article  Google Scholar 

  12. F. Birch, The velocity of compressional waves in rocks to 10 kilobars, J. Geophys. Res. 66 (1961), 2199.

    Article  Google Scholar 

  13. W.F. Brace, J.B. Walsh and W.T. Frangos, Permeability of granite under high pressure, J. Geophys. Res. 73 (1968), 2225.

    Article  Google Scholar 

  14. H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Oxford Univ. Press 1959), 510 pp.

    Google Scholar 

  15. W.F. Brace, A.S. Orange and T.R. Madden, The effect of pressure on the electrical resistivity of water-saturated crystalline rocks, J. Geophys. Res. 70 (1965), 5669.

    Article  Google Scholar 

  16. W.F. Brace and A.S. Orange, Further studies of the effects of pressure on electrical resistivity of rocks, J. Geophys. Res. 73 (1968), 5407.

    Article  Google Scholar 

  17. K. Hadley, Laboratory investigation of dilatancy and motion on fault surfaces at low confining pressures, in Proc. of Conf. on Tectonic Problems of the San Andreas Fault System, edited by R.L. Kovach and A. Nur (Stanford University Press, California 1973), p. 427.

    Google Scholar 

  18. W.F. Brace, B.W. Paulding, Jr., and C. Scholz, Dilatancy in the fracture of crystalline rocks, J. Geophys. Res. 71 (1966), 3939.

    Article  Google Scholar 

  19. W.F. Brace and R.J. Martin III, A test of the law of effective stress for crystalline rocks of low porosity, Int. J. Rock Mech. Min. Sci. 5 (1968), 415.

    Article  Google Scholar 

  20. C.H. Scholz and R. Kranz, Notes on dilatancy recovery, J. Geophys. Res. 79 (1974), 2132.

    Article  Google Scholar 

  21. B.T. Brady, Theory of earthquakes, Part I: A scale independent theory of rock failure, Pure and Appl. Geophys., in press.

    Google Scholar 

  22. R.J. O’Connell and B. Budiansky, Seismic velocities in dry and saturated cracked solids, Preprint, 1974.

    Google Scholar 

  23. D.L. Anderson and J.H. Whitcomb, Time dependent seismology, Preprint, 1974.

    Google Scholar 

  24. E.W. Washburn (editor), International Critical Tables: Vol. V (McGraw-Hill, N.Y. 1929, for the National Research Council).

    Google Scholar 

  25. G.C. Kennedy and W.T. Holster, Pressure-volume-temperature and phase relations of water and carbon dioxide, in Handbook of Physical Constants, Geol. Soc. Amer. Mem. 97 (1966).

    Google Scholar 

  26. T.L. de Fazio, K. Aki and J. Alba, Solid earth tide and observed change in the in situ seismic velocity, J. Geophys. Res. 78 (1973), 1319.

    Article  Google Scholar 

  27. P. Reasenberg and K. Aki, A precise, continuous measurement of seismic velocity for monitoring in situ stress, J. Geophys. Res. 79 (1974), 399.

    Article  Google Scholar 

  28. J.B. Walsh, The effect of cracks on the compressibility of rock, J. Geophys. Res. 70 (1965), 381.

    Article  Google Scholar 

  29. J.B. Walsh, The effect of cracks on the uniaxial elastic compression of rocks, J. Geophys. Res. 70 (1965), 399.

    Article  Google Scholar 

  30. J.B. Walsh, The effect of cracks on Poisson’s ratio, J. Geophys. Res. 70 (1965), 5249.

    Article  Google Scholar 

  31. T.C. Hanks, Constraints on the dilatancy-diffusion model of the earthquake mechanism, J. Geophys Res. 79 (1974), 3023.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Basel AG

About this chapter

Cite this chapter

Hadley, K. (1975). V p /V s Anomalies in Dilatant Rock Samples. In: Wyss, M. (eds) Earthquake Prediction and Rock Mechanics. Contributions to Current Research in Geophysics (CCRG). Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5534-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5534-1_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5536-5

  • Online ISBN: 978-3-0348-5534-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics