Skip to main content

Fractal Dimension of Fault Systems in Japan: Fractal Structure in Rock Fracture Geometry at Various Scales

  • Chapter
Fractals in Geophysics

Part of the book series: Pure and Applied Geophysics ((PTV))

Abstract

Based on fault maps, whether or not the fracture geometry of rocks is self-similar, was examined by using a box-counting algorithm. The statistical self-similarity (fractal structure) of the fault fracture systems holds well at the scale of about 2 to 20 km. The fractal dimension in Japan varied from 1.05 to 1.60. The fractal dimension is about 1.5–1.6 at the central part of the Japan Arc, and decreases with distance from the center. At a smaller scale, the fractal structure also holds well in the rock fracture geometry. The fractal dimension of the North Izu Peninsula fault system (branching faults) is 1.49 at the scale of 0.625 to 10 km, the fractal dimension of rock fracture geometry at the scale order of 10−1 to 10−2 meters is about 1.49–1.61. The upper limit of the fractal dimension of rock fracture geometry is about 1.6, judging from the estimation of fractal dimension on actual fracture geometry of rocks. This value may impose a restraint on modeling of faulting and the fracture process of rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, K. (1978), Dislocations, Source Dimensions and Stresses Associated with Earthquakes in the Izu Peninsula, Japan, J. Phys. Earth 26, 253–274.

    Article  Google Scholar 

  • Aki, K., A probabilistic synthesis of precursory phenomena, In Earthquake Prediction (eds. Simpson, D. W. and Richards, P. G.) (Maurice Ewing Volume 4, AGU, Washington, D. C. 1981) pp. 566-574.

    Google Scholar 

  • Allègre, C. J., Le Mouel, J. L., and Provost, A. (1982), Scaling Rules in Rock Fracture and Possible Implications for Earthquake Prediction, Nature 297, 47–49.

    Article  Google Scholar 

  • Aviles, C. A., Scholz, C. H., and Boatwright, J. (1987), Fractal Analysis Applied to Characteristic Segments of the San Andreas Fault, J. Geophys. Res. 92, 331–344.

    Article  Google Scholar 

  • Barton, C. C., and Larsen, E. (1985), Fractal geometry of two-dimensional fracture networks at Yucca Mountain, Southwestern Nevada, In Fundamentals of Rock Joints, Proc. Int. Sympo. on Fundamentals of Rock Joints, (ed. Stephansson, Ove), pp. 77-84.

    Google Scholar 

  • Barton, C. C., and Cameron, B. G. (1986), Fractal Scaling of Fracture and Fault Maps at Yucca Mountain, Southern Nevada, EOS (Transactions of the American Geophysical Union) 67 (44), 870.

    Google Scholar 

  • Brown, S. R., and Scholz, C. H. (1985), Broad Bandwidth Study of the Topography of Natural Rock Surfaces, J. Geophys. Res. 90, 12575–12582.

    Article  Google Scholar 

  • Davidge, R. W. and Green, T. J. (1968), The Strength of Two-phase Ceramic/Glass Material, J. Mater. Sci. 3, 629–634.

    Article  Google Scholar 

  • Eykholt, R., and Umberger, D. K. (1986), Characterization of Fat Fractals in Nonlinear Dynamical Systems, Phys. Rev. Lett. 57, 2333–2336.

    Article  Google Scholar 

  • Hirata, T., Satoh, T., and Ito, K. (1987), Fractal Structure of Spatial Distribution of Microfracturing in Rock, Geophys. J. R. Astr. Soc. 90, 369–374.

    Article  Google Scholar 

  • Hirata, T. (1987), Omori’s Power Law Aftershock Sequence of Microfracturing in the Rock Fracture Experiment, J. Geophys. Res. 92, 6215–6221.

    Article  Google Scholar 

  • Kondratev, V. N., Kulukin, A. M., Ponomarev, V. S., Romashov, A. N., and Chubarov, V. M. (1985), Investigation of a Two-layer Model of the Earth’s Crust for Two-axis Extension of the Lower Layer, Izvestiya, Earth Physics 21 (3), 176–183.

    Google Scholar 

  • Kagan, Y. Y., and Knopoff, L. (1978), Statistical Study of the Occurrence of Shallow Earthquakes, Geophys. J. R. Astr. Soc. 55, 67–86.

    Article  Google Scholar 

  • Kagan, Y. Y., and Knopoff, L. (1980), Spatial Distribution of Earthquakes: The Two-point Correlation Function, Geophys. J. R. Astr. Soc. 62, 303–320.

    Article  Google Scholar 

  • Kagan, Y. Y., and Knopoff, L. (1981), Stochastic Synthesis of Earthquake Catalogs, J. Geophys. Res. 86, 2853–2862.

    Article  Google Scholar 

  • King, G. (1983), The Accommodation of Large Strains in the Upper Lithosphere of the Earth and Other Solids by Self-similar Fault Systems: The Geometrical Origin of b-value, Pure Appl. Geophys. 121, 761–815.

    Article  Google Scholar 

  • Madden, T. R. (1983), Microcrack Connectivity in Rocks: A Renormalization Group Approach to the Critical Phenomena of Conduction and Failure in Crystalline Rocks, J. Geophys. Res. 88, 585–592.

    Article  Google Scholar 

  • Mandelbrot, B. B., The Fractal Geometry of Nature (Freeman, New York 1983).

    Google Scholar 

  • Matsuda, T., Surface faults associated with Kita-Izu earthquake of 1930 in Izu Peninsula, Japan, in Izu Peninsula (eds. Hoshino, M., and Aoki, H.) (Tokai Univ. Press, Tokyo 1972), pp. 73–93 (in Japanese).

    Google Scholar 

  • Matsuda, T., Ota, Y., Okada, A., Shimizu, F., and Togo, M. (1977), Aerial Photo-interpretation of Active Faults—The Individual Difference and Examples, Bull, Earthq. Res. Inst. 52, 461–497.

    Google Scholar 

  • Matsuda, T., Active faults and damaging earthquakes in Japan—Macroseismic zoning and precaution fault zones, In Earthquake Prediction (eds. Simpson, D. W. and Richards, P.G.) (Maurice Ewing Volume 4, AGU, Washington, D. C. 1981) pp. 279-289.

    Google Scholar 

  • Mogi, K. (1962), Magnitude-frequency Relation for Elastic Shocks Accompanying Fractures of Various Materials and Some Related Problems in Earthquakes, Bull. Earthq. Res. Inst. 40, 831–853.

    Google Scholar 

  • Nh, Y., Nakamura, H., Ito, K., Fujii, N., and Matsuda, J., The fractal dimension of fractured fragments in relation with fracture energy, In Proc. the 18th I.S.A.S. Lunar and Planet. Sympo. (eds. H. Mizutani, Oya, H., and Shimizu, M.) (Institute of Space and Astronautical Science, Tokyo 1985) pp. 58–59.

    Google Scholar 

  • Okubo, P. G., and Aki, K. (1987), Fractal Geometry in the San Andreas Fault System, J. Geophys. Res. 92, 345–355.

    Article  Google Scholar 

  • Otsuka, M. (1972), A Chain-reaction-type Source Model as a Tool to Interpret the Magnitude-frequency Relation of Earthquakes, J. Phys. Earth 20, 35–45.

    Article  Google Scholar 

  • Research Group for Active Faults of Japan, Active Faults in Japan, Sheet Maps and Inventories (in Japanese) (Univ. of Tokyo Press, Tokyo 1980).

    Google Scholar 

  • Sadovskiy, M. A., Golubeva, T. V., Pisarenko, V. F., and Shnirman, M.G. (1984), Characteristic Dimensions of Rock and Hierarchial Properties of Seismicity, Izvestiya, Earth Physics 20, 87–96.

    Google Scholar 

  • Saito, M., Kikuchi, M., and Kudo, K. (1973), Analytical Solution of “Go-Game Model” of Earthquake, Zisin 26, 19–25, (in Japanese).

    Google Scholar 

  • Scholz, C. H., (1968), Microfractures, Aftershocks, and Seismicity, Bull. Seismol. Soc. Am. 58, 1117–1130.

    Google Scholar 

  • Scholz, C. H., and Aviles, C. A. The fractal geometry of faults and faulting, In Earthquake Source Mechanics (eds. Das, S., Boatwright, J., and Scholz, C. H.) (Maurice Ewing Volume 6, AGU, Washington, D. C. 1986) pp. 147-155.

    Google Scholar 

  • Smalley, R. F., Turcotte, D. L., and Solla, S. A. (1985), A Renormalization Group Approach to the Stick-slip Behavior of Faults, J. Geophys. Res. 90, 1894–1900.

    Article  Google Scholar 

  • Stauffer, D., Introduction to Percolation Theory (Taylor and Francis, London 1985).

    Book  Google Scholar 

  • Takayasu, H. (1985), A Deterministic Model of Fracture, Prog. Theor. Phys. 74, 1343–1345.

    Article  Google Scholar 

  • Turcotte, D. L., Smalley, R. F., and Solla, S. A. (1985), Collapse of Loaded Fractal Trees, Nature 313, 671–672.

    Article  Google Scholar 

  • Turcotte, D. L. (1986), Fractals and Fragmentation, J. Geophys. Res. 91, 1921–1926.

    Article  Google Scholar 

  • Vere-Jones, D. (1976), A Branching Model for Crack Propagation, Pure Appl. Geophys. 114, 711–725.

    Article  Google Scholar 

  • Watanabe, K. (1986), Stochastic Evaluation of the Two Dimensional Continuity of Fractures in a Rock Mass, Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 23, 431–437.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Basel AG

About this chapter

Cite this chapter

Hirata, T. (1989). Fractal Dimension of Fault Systems in Japan: Fractal Structure in Rock Fracture Geometry at Various Scales. In: Scholz, C.H., Mandelbrot, B.B. (eds) Fractals in Geophysics. Pure and Applied Geophysics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-6389-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-6389-6_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-6391-9

  • Online ISBN: 978-3-0348-6389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics