Skip to main content

Abstract

Airway smooth muscle (ASM) cell complexity is becoming increasingly apparent. Initially considered to be merely a contractile element, it is now known that smooth muscle cells actively regulate their function and microenvironment by producing a range of cytokines and low molecular weight products in addition to extracellular matrix. Growth and proliferation of smooth muscle cells within the airway is also recognised as a component of airway pathology, especially in asthma. This chapter is intended to provide an overview of smooth muscle function and to highlight recent advances in areas of active research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Panettieri RA, Murray RK, DePalo LR, Yadvish PA, Kotlikoff MI (1989) A human air-way smooth muscle cell line that retains physiological responsiveness. Am J Physiol 256: C329–335

    PubMed  CAS  Google Scholar 

  2. Moreno RH, Hogg JC, Pare PD (1986) Mechanics of airway narrowing. Am Rev Respir Dis 133: 1171–1180

    PubMed  CAS  Google Scholar 

  3. MA X, Li W, Stephens NL (1996) Detection of two clusters of mechanical properties of smooth muscle along the airway tree. J Appl Physiol 80: 857–861

    PubMed  CAS  Google Scholar 

  4. Gabella G (1994) Anatomy of airways smooth muscle. In: D Raeburn D, MA Giembycz (eds): Airways smooth muscle: structure, innervation and neurotransmission. Birkhauser Verlag, Basel, 1–29

    Chapter  Google Scholar 

  5. Sparrow MP, McFawn PK, Omani TI, Mitchell FIW (1992) Activation of smooth mus-cle in the airway wall, force production, and airway narrowing. Can J Physiol Pharmacol 70: 607–614

    Article  PubMed  CAS  Google Scholar 

  6. Stephens NL, Jiang H, Halayko A (1993) Role of airway smooth muscle in asthma: possible relation to the neuroendocrine system. Anatomical Record 236: 152–163; discussion 163–167

    Article  PubMed  CAS  Google Scholar 

  7. Shore SA, Laporte J, Hall IP, Hardy E, Panettieri RA, Jr (1997) Effect of IL-1 beta on responses of cultured human airway smooth muscle cells to bronchodilator agonists. Am J Respir Cell Mol Biol 16: 702–712

    PubMed  CAS  Google Scholar 

  8. Stephens NL, Seow CY, Halayko AJ, Jiang H (1992) The biophysics and biochemistry of smooth muscle contraction. Can J Physiol Pharmacol 70: 515–531

    Article  PubMed  CAS  Google Scholar 

  9. Solway J, Fredberg JJ (1997) Perhaps airway smooth muscle dysfunction contributes to asthmatic bronchial hyperresponsiveness after all. Am J Respir Cell Mol Biol 17: 144–146

    PubMed  CAS  Google Scholar 

  10. Johnson JD, Snyder CH (1995) Calcium regulation of smooth muscle contractile proteins. In: AR Means (ed): Advances in second messenger and phosphoprotein research. Raven Press, New York, 153–174

    Google Scholar 

  11. Knighton DR, Pearson RB, Sowadski JM, Means AR, Ten Eyck LF, Taylor SS, Kemp BE (1992) Structural basis of the intrasteric regulation of myosin light chain kinases. Science 258: 130–135

    Article  PubMed  CAS  Google Scholar 

  12. Jiang H, Rao K, Liu X, Stephens NL (1992) Ragweed sensitization-induced increases of myosin light chain kinase content in canine airway smooth muscle. Am J Respir Cell Mol Biol 7: 567–573

    PubMed  CAS  Google Scholar 

  13. Rembold CM, Murphy RA (1993) Models of the mechanism for cross-bridge attachment in smooth muscle. J Muscle Res Cell Motil 14: 325–333

    Article  PubMed  CAS  Google Scholar 

  14. Ikebe M, Reardon S (1988) Binding of caldesmon to smooth muscle myosin. J Biol Chem 263: 3055–3058

    PubMed  CAS  Google Scholar 

  15. Walsh MP, Sutherland C (1989) A model for caldesmon in latch-bridge formation in smooth muscle. Adv Exp Med Biol 255: 337–346

    Article  PubMed  CAS  Google Scholar 

  16. Smith CWJ, Pritchard K, Marston SB (1987) The mechanism of calcium regulation of vascular smooth muscle thin filaments by caldesmon and calmodulin. J Biol Chem 262: 116–122

    PubMed  CAS  Google Scholar 

  17. Gerthoffer WT (1994) Current concepts on mechanisms of force maintenance in airways smooth musle. In: D Raeburn, MA Giembycz (eds): Airways smooth muscle: biochemical control of contraction and relaxation. Birkhauser Verlag, Basel, 117–136

    Google Scholar 

  18. Chamley-Campbell J, Campbell G, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 85: 501–513

    Google Scholar 

  19. Halayko AJ, Stephens NL (1994) Potential role for phenotypic modulation of bronchial smooth muscle cells in chronic asthma. Can J Physiol Pharmacol 72: 1448–1457

    Article  CAS  Google Scholar 

  20. Halayko AJ, Salari H, MA X, Stephens NL (1996) Markers of airway smooth muscle cell phenotype. Am J Physiol 270: L1040–51

    PubMed  CAS  Google Scholar 

  21. Halayko AJ, Rector E, MA X, Stephens DL, Stephens NL (1997) Characterisation of airway smooth muscle cell phenotypes. Am J Respir Crit Care Med 155: A369

    Google Scholar 

  22. Hirst SJ (1996) Airway smooth muscle cell culture: application to studies of airway wall remodelling and phenotype plasticity in asthma. Eur Respir J 9: 808–820

    Article  PubMed  CAS  Google Scholar 

  23. Hirst SJ, Twort CH (1997) Effects of extracellular matrix on human airway smooth muscle cell proliferation and phenotype. Am J Respir Crit Care Med 155: A371

    Google Scholar 

  24. Smith PG, Tokui T, Ikebe M (1995) Mechanical strain increases contractile enzyme activity in cultured airway smooth muscle cells. Am J Physiol 268: L999–L1005

    PubMed  CAS  Google Scholar 

  25. Smith PG, Moreno R, Ikebe M (1997) Strain increases airway smooth muscle contractile and cytoskeletal proteins in vitro. Am J Physiol 272: L20–L27

    PubMed  CAS  Google Scholar 

  26. Schramm CM, Grunstein MM (1992) Assessment of signal transduction mechanisms regulating airway smooth muscle contractility. Am J Physiol 262: L119–39

    PubMed  CAS  Google Scholar 

  27. Knox AJ, Tattersfield AE (1995) Airway smooth muscle relaxation. Thorax 50: 894–901

    Article  PubMed  CAS  Google Scholar 

  28. Marmy N, Mottas J, Durand J (1993) Signal transduction in smooth muscle cells from human airways. Respir Physiol 91: 295–306

    Article  PubMed  CAS  Google Scholar 

  29. Takahashi T, Belvisi MG, Patel H, Ward JK, Tadjkarimi S, Yacoub MH, Barnes PJ (1994) Effect of Ba 679 BR, a novel long-acting anticholinergic agent, on cholinergic neurotransmission in guinea pig and human airways. Am J Respir Crit Care Med 150: 1640–1645

    PubMed  CAS  Google Scholar 

  30. Coburn RF, Baron CB (1990) Coupling mechanisms in airway smooth muscle. Am J Physiol 258: L119–L133

    CAS  Google Scholar 

  31. Advenier C, Cerrina J, Duroux P, Floch A, Rennier A (1984) Effects of five different calcium antagonists on guinea-pig isolated trachea. Br J Pharmacol 82: 727–733

    Article  PubMed  CAS  Google Scholar 

  32. Murray RK, Fleischmann BK, Kotlikoff MI (1993) Receptor-activated Ca influx in human airway smooth muscle: use of Ca imaging and perforated patch-clamp techniques. Am J Physiol 264: C485–90

    PubMed  CAS  Google Scholar 

  33. Knox AJ, Baldwin DR, Cragoe EJ Jr, Ajao P (1993) The effect of sodium transport and calcium channel inhibitors on phorbol ester-induced contraction of bovine airway smooth muscle. Pulmon Pharmacol 6: 241–246

    Article  CAS  Google Scholar 

  34. Hall IP, Donaldson J, Hill SJ (1989) Inhibition of histamine-stimulated inositol phospholipid hydrolysis by agents which increase cyclic AMP levels in bovine tracheal smooth muscle. Br J Pharmacol 97: 603–613

    Article  PubMed  CAS  Google Scholar 

  35. Jones KA, Lorenz RR, Warner DO, Katusic ZS, Sieck GC (1994) Changes in cytosolic cGMP and calcium in airway smooth muscle relaxed by 3-morpholinosydnonimine. Am J Physiol 266: L9–L16

    PubMed  CAS  Google Scholar 

  36. Beavo JA, Conti M, Heaslip RJ (1994) Multiple cyclic nucleotide phosphodiesterases. Mol Pharmacol 46: 399–405

    PubMed  CAS  Google Scholar 

  37. Webb BL, Lindsay MA, Barnes PJ, Giembycz MA (1997) Protein kinase C isoenzymes in airway smooth muscle.Biochem J 324: 167–175

    PubMed  CAS  Google Scholar 

  38. Yang KX, Black JL (1996) Protein kinase C induced changes in human airway smooth muscle tone: the effects of Ca2+ and Na+ transport. Eur J Pharmacol 315: 65–71

    Article  PubMed  CAS  Google Scholar 

  39. Tajimi M, Hori M, Mitsui M, Ozaki H, Karaki H (1995) Inhibitory effect of forskolin on myosin phosphorylation-dependent and independent contractions in bovine tracheal smooth muscle. J Smooth Muscle Res 31: 129–142

    Article  PubMed  CAS  Google Scholar 

  40. Peiper U, Knipp SC, Thies B, Henke R (1996) Activation of protein kinase C accelerates contraction kinetics of airway smooth muscle. Eur J Physiol 432: R47–R52

    CAS  Google Scholar 

  41. Gerthoffer WT, Yamboliev IAA, Pohl J, Haynes R, Dang S, McHugh J (1997) Activation of MAP kinases in airway smooth muscle. Am J Physiol 272: L244–L252

    PubMed  CAS  Google Scholar 

  42. Edwards G, Weston AH (1995) The role of potassium channels in excitable cells. Diabetes Res Clin Pract 28 (Suppl): S57–S66

    Article  PubMed  CAS  Google Scholar 

  43. Snetkov VA, Hirst SJ, Twort CH, Ward JP (1995) Potassium currents in human freshly isolated bronchial smooth muscle cells. Br J Pharmacol 115: 1117–1125

    Article  PubMed  CAS  Google Scholar 

  44. Adda S, Fleischmann BK, Freedman BD, Yu M, Hay DW, Kotlikoff MI (1996) Expression and function of voltage-dependent potassium channel genes in human airway smooth muscle. J Biol Chem 271: 13239–13243

    Article  PubMed  CAS  Google Scholar 

  45. Buckle DR (1993) Prospects for potassium channel activators in the treatment of airways obstruction. Pulmon Pharmacol 6: 161–169

    Article  CAS  Google Scholar 

  46. Chapman ID, Kristersson A, Mathelin G, Schaeublin E, Mazzoni L, Boubekeur K, Murphy N, Morley J (1992) Effects of a potassium channel opener (SDZ PCO 400) on guinea-pig and human pulmonary airways. Br J Pharmacol 106: 423–429

    Article  PubMed  CAS  Google Scholar 

  47. Kume H, Hall IP, Washabau RJ, Takagi K, Kotlikoff MI (1994) Beta-adrenergic agonists regulate KCa channels in airway smooth muscle by cAMP-dependent and -independent mechanisms. J Clin Invest 93: 371–379

    Article  PubMed  CAS  Google Scholar 

  48. Chiu P, Cook SJ, Small RC, Berry JL, Carpenter JR, Downing SJ, Foster RW, Miller AJ, Small AM (1993) P-Adrenoceptor subtypes and the opening of plasmalemmal K+ channels in bovine trachealis muscle: studies of mechanical activity and ion fluxes. Br J Pharmacol 109: 1149–1156

    Article  PubMed  CAS  Google Scholar 

  49. Vincent NJ, Knudson R, Leith DF, Macklem PT, Mead J (1970) Factors influencing pulmonary resistance. J Appl Physiol 29: 236–243

    PubMed  CAS  Google Scholar 

  50. Barnes PJ (1993) Muscarinic receptor subtypes in airways. Life Sci 52: 521–528

    Article  PubMed  CAS  Google Scholar 

  51. Fryer AD, Jacoby DB (1993) Effect of inflammatory cell mediators on M2 muscarinic receptors in the lung. Life Sci 52: 529–536

    Article  PubMed  CAS  Google Scholar 

  52. Wessler, I, Helliwig D, Racke K (1990) Epithelium-derived inhibition of [3H]-acetylcholine release from the isolated guinea-pig trachea. Naunyn-Schmiedeberg’s Arch Pharmacol 342: 387–393

    CAS  Google Scholar 

  53. Barnes PJ, Baraniuk L, Belvisi MG (1991) Neuropeptides in the respiratory tract. Am Rev Respir Dis 144: 1187–1198

    Article  PubMed  CAS  Google Scholar 

  54. Ward JK, Belvisi MG, Fox AJ, Miura M, Tadjkarimi S, Yacoub MH, Barnes PJ (1993) Modulation of cholinergic neural bronchoconstriction by endogenous nitric oxide and vasoactive intestinal peptide in human airways in vitro.J Clin Invest 92: 736–742

    Article  PubMed  CAS  Google Scholar 

  55. Brodie DH, Lotz M, Cuomo AJ, Coburn DA, Federman EC, Wasserman SI (1992) Cytokines in symptomatic asthmatic airways. J Allergy Clin Immunol 89: 958–967

    Article  Google Scholar 

  56. Anticevich SZ, Hughes JM, Black JL, Armour CL (1995) Induction of human airway hyperresponsiveness by tumour necrosis factor-alpha. Eur J Pharmacol 284: 221–225

    Article  PubMed  CAS  Google Scholar 

  57. Hallahan AR, Armour CL, Black JL (1990) Products of neutrophils and eosinophils increase the responsiveness of human isolated bronchial tissue. Eur Respir J 3: 554–558

    PubMed  CAS  Google Scholar 

  58. Fernandes LB, Henry PJ, Rigby PJ, Goldie RG (1996) Endothelin B (ETB) receptor-activated potentiation of cholinergic nerve-mediated contraction in human bronchus. Br J Pharmacol 118: 1873–1874

    Article  PubMed  CAS  Google Scholar 

  59. Ind PW (1994) Role of the sympathetic nervous system and endogenous catecholamines in the regulation of airway smooth muscle tone. In: D Raeburn, MA Giembycz (eds): Airways smooth muscle: structure, innervation and neurotransmission. Birkhauser Verlag, Basel, 29–41

    Chapter  Google Scholar 

  60. Goldie RG (1990) Receptors in asthmatic airways. Am Rev Respir Dis 141: S151–S156

    PubMed  CAS  Google Scholar 

  61. Bai TR, Lam R, Prasad FYF (1989) Effects of adrenergic agonists and adenosine on cholinergic neurotransmission in lung tracheal smooth muscle. Pulmon Pharmacol 1: 193–199

    Article  CAS  Google Scholar 

  62. Barnes PJ (1994) Modulation of neurotransmitter release from airways nerves. In: D Raeburn, MA Giembycz (eds): Airways smooth muscle: structure,innervation and neurotransmission. Birkhauser Verlag, Basel, 209–259

    Chapter  Google Scholar 

  63. Belvisi MG, Stretton CD, Miura M, Verleden GM, Tadjarimi S, Yacoub MH, Barnes PJ (1992) Inhibitory NANC nerves in human tracheal smooth muscle: a quest for the neurotransmitter. J Appl Physiol 73: 2505–2510

    PubMed  CAS  Google Scholar 

  64. Barnes PJ, Dixon CMS (1984) The effect of inhaled vasoactive intestinal peptide on bronchial hyperreactivity in man. Am Rev Respir Dis 130: 162–166

    PubMed  CAS  Google Scholar 

  65. Maruno K, Absood A, Said SI (1995) VIP inhibits basal and histamine-stimulated pro-liferation of human airway smooth muscle cells. Am J Physiol 268: L1047–L1051

    PubMed  CAS  Google Scholar 

  66. Belvisi MG, Stretton CD, Yacoub M, Barnes PJ (1992) Nitric oxide is the endogenous neurotransmitter of bronchodilator nerves in humans. Eur J Pharmacol 210: 221–222

    Article  PubMed  CAS  Google Scholar 

  67. Yates DH, Kharitonov SA, Thomas PS, Barnes PJ (1996) Endogenous nitric oxide is decreased in asthmatic patients by an inhibitor of inducible nitric oxide synthase. Am J Respir Crit Care Med 154: 247–250

    CAS  Google Scholar 

  68. Lundberg JM (1995) Tachykinins, sensory nerves, and asthma — an overview. Can J Physiol Pharmacol 73: 908–914

    Article  PubMed  CAS  Google Scholar 

  69. Lundberg JM, Martling CR, Lundblad L (1988) Cigarette smoke-induced irritation in the airways in relation to peptide-containing, capsaicin-sensitive sensory neurons. Klinische Wochenschrift 66 (Suppl 11): 151–160

    PubMed  CAS  Google Scholar 

  70. Stewart AG, Thompson DC, Fennessy MR (1984) Involvement of capsaicin-sensitive afferent neurones in a vagal-dependent interaction between leukotriene D4 and histamine on bronchomotor tone. Agents Actions 15: 500–508

    Article  PubMed  CAS  Google Scholar 

  71. Ellis JL, Undem BJ (1991) Role of peptidoleukotrienes in capsaicin-sensitive sensory fibre-mediated responses in guinea-pig airways. J Physiol 436: 469–484

    PubMed  CAS  Google Scholar 

  72. Barnes PJ (1986) Neural control of human airways in health and disease. Am Rev Respir Dis 134: 1289–1314

    PubMed  CAS  Google Scholar 

  73. Henderson WR Jr (1994) Role of leukotrienes in asthma. Ann Allergy 72: 272–278

    PubMed  Google Scholar 

  74. O’Byrne PM (1996) Airway inflammation and asthma. Aliment Pharmacol Ther 10 (Suppl 2): 18–24

    PubMed  Google Scholar 

  75. Liu MC, Bleecker ER, Lichtenstein LM, Kagey-Sobotka A, Niv Y, McLemore, TL, Per-mutt S, Proud D, Hubbard WC (1990) Evidence for elevated levels of histamine, prostaglandin D2, and other bronchoconstricting prostaglandins in the airways of subjects with mild asthma. Am Rev Respir Dis 142: 126–132

    PubMed  CAS  Google Scholar 

  76. Johnston SL, Bardin PG, Harrison J, Ritter W, Joubert JR, Holgate ST (1992) The effects of an oral thromboxane TP receptor antagonist BAY u 3405, on prostaglandin D2- and histamine-induced bronchoconstriction in asthma, and relationship to plasma drug concentrations. Br J Clin Pharmacol 34: 402–408

    Article  PubMed  CAS  Google Scholar 

  77. Aizawa H, Inoue H, Matsumoto K, Koto H, Nakano H, Hara N (1996) Thromboxane A2 antagonist inhibits leukotriene D4-induced smooth muscle contraction in guinea-pig lung parenchyma, but not in trachea. Prostaglandins Leukot Essent Fatty Acids 55: 437–440

    Article  PubMed  CAS  Google Scholar 

  78. Jones GL, Saroea HG, Watson RM, O’Byrne PM (1992) Effect of an inhaled thromboxane mimetic (U46619) on airway function in human subjects. Am Rev Respir Dis 145: 1270–1274

    PubMed  CAS  Google Scholar 

  79. Sampson AP, Thomas RU, Costello JF, Piper PJ (1992) Enhanced leukotriene synthesis in leukocytes of atopic and asthmatic subjects. Br J Clin Pharmacol 33: 423–430

    Article  PubMed  CAS  Google Scholar 

  80. Chung KF (1995) Leukotriene receptor antagonists and biosynthesis inhibitors: potential breakthrough in asthma therapy. Eur Respir J 8:1203–1213

    Article  PubMed  CAS  Google Scholar 

  81. Stewart AG (1994) Biological properties of platelet-activating factor. In: FM Cunningham (ed): Lipid mediators. Academic Press, London, 223–296

    Google Scholar 

  82. Johnson PR, Black JL, Armour CL (1992) Platelet-activating factor-induced contraction of human isolated bronchus. Eur Respir J 5: 970–974

    PubMed  CAS  Google Scholar 

  83. Spencer DA, Green SE, Evans JM, Piper PJ, Costello JF (1990) Platelet activating factor does not cause a reproducible increase in bronchial responsiveness in normal man. Clin Exp Allergy 20: 525–532

    Article  CAS  Google Scholar 

  84. Kharitonov SA, Yates D, Barnes PJ (1995) Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections. Eur Respir J 8: 295–297

    Article  PubMed  CAS  Google Scholar 

  85. Barnes PJ, Liew FY (1995) Nitric oxide and asthmatic inflammation. Immunol Today 16: 128–130

    Article  PubMed  CAS  Google Scholar 

  86. Barnes PJ (1996) NO or no NO in asthma? Thorax 51: 218–220

    Article  PubMed  CAS  Google Scholar 

  87. Joad J, Casale TB (1988) Histamine and airway caliber. Ann Allergy 61: 1–7

    PubMed  CAS  Google Scholar 

  88. Knight DA, Stewart GA, Thompson PJ (1992) Histamine tachyphylaxis in human airway smooth muscle. The role of H2-receptors and the bronchial epithelium. Am Rev Respir Dis 146: 137–140

    CAS  Google Scholar 

  89. White JP, Mills J, Eiser NM (1987) Comparison of the effects of histamine H1- and H2- receptor agonists on large and small airways in normal and asthmatic subjects. Br J Dis Chest 81: 155–169

    Article  PubMed  CAS  Google Scholar 

  90. Driver AG, Kukoly CA, Ali S, Mustafa SJ (1993) Adenosine in bronchoalveolar lavage fluid in asthma. Am Rev Respir Dis 148: 91–97

    PubMed  CAS  Google Scholar 

  91. Bjorck T, Gustafsson LE, Dahlen SE (1992) Isolated bronchi from asthmatics are hyper-responsive to adenosine, which apparently acts indirectly by liberation of leukotrienes and histamine. Am Rev Resp Dis 145: 1087–1091

    Article  PubMed  CAS  Google Scholar 

  92. Meade CJ, Mierau J, Leon I, Ensinger HA (1996) In vivo role of the adenosine A3 receptor: N6–2-(4-aminophenyl)ethyladenosine induces bronchospasm in BDE rats by a neurally mediated mechanism involving cells resembling mast cells. J Pharmacol Exp Ther 279: 1148–1156

    PubMed  CAS  Google Scholar 

  93. Goldie RG, Knott PG, Carr MJ, Hay DW, Henry PJ (1996) The endothelins in the pulmonary system. Pulmon Pharmacol 9: 69–93

    Article  CAS  Google Scholar 

  94. Barnes PJ (1994) Endothelins and pulmonary diseases. J Appl Physiol 77: 1051–1059

    PubMed  CAS  Google Scholar 

  95. Takahashi T, Barnes PJ, Kawikova I, Yacoub MH, Warner TD, Belvisi MG (1997) Contraction of human airway smooth muscle by endothelin-1 and IRL 1620: effect of bosentan. Eur J Pharmacol 324: 219–222

    Article  PubMed  CAS  Google Scholar 

  96. Noguchi K, Ishikawa K, Yano M, Ahmed A, Cortes A, Abraham WM (1995) Endothelin-1 contributes to antigen-induced airway hyperresponsiveness. J Appl Physiol 79: 700–705

    PubMed  CAS  Google Scholar 

  97. Goldie RG, Henry PJ, Knott PG, Self GJ, Luttmann MA, Hay DW (1995) Endothelin1 receptor density, distribution, and function in human isolated asthmatic airways. Am J Respir Crit Care Med 152: 1653–1658

    CAS  Google Scholar 

  98. Tomaki M, Ichinose M, Miura M, Hirayama Y, Yamauchi H, Nakajima N, Shirato K (1995) Elevated substance P content in induced sputum from patients with asthma and patients with chronic bronchitis. Am J Respir Crit Care Med 151: 613–617

    PubMed  CAS  Google Scholar 

  99. Nieber K, Baumgarten CR, Rathsack R, Furkert J, Oehme P, Kunkel G (1992) Substance P and beta-endorphin-like immunoreactivity in lavage fluids of subjects with and without allergic asthma. J Allergy Clin Immunol 90: 646–652

    Article  PubMed  CAS  Google Scholar 

  100. Advenier C, Naline E, Toty L, Bakdach H, Emonds-Alt X, Vilain P, Breliere JC, Le Fur G (1992) Effects on the isolated human bronchus of SR 48968, a potent and selective nonpeptide antagonist of the neurokinin A (NK2) receptors. Am Rev Respir Dis 146: 1177–1181

    PubMed  CAS  Google Scholar 

  101. Bai TR, Zhou D, Weir T, Walker B, Hegele R, Hayashi S, McKay K, Bondy GP, Fong T (1995) Substance P (NK1)- and neurokinin A (NK2)-receptor gene expression in inflammatory airway diseases. Am J Physiol 269: L309–17

    PubMed  CAS  Google Scholar 

  102. Matsuse T, Thomson RJ, Chen XR, Salari H, Schellenberg, RR (1991) Capsaicin inhibits airway hyperresponsiveness but not lipoxygenase activity or eosinophilia after repeated aerosolized antigen in guinea pigs. Am Rev Respir Dis 144: 368–372

    Article  PubMed  CAS  Google Scholar 

  103. Ladenius AR, Folkerts G, van der Linde HJ, Nijkamp FP (1995) Potentiation by viral respiratory infection of ovalbumin-induced guinea-pig tracheal hyperresponsiveness: role for tachykinins. Br J Pharmacol 115: 1048–1052

    Article  PubMed  CAS  Google Scholar 

  104. Buckley TL, Nijkamp FP (1994) Mucosal exudation associated with a pulmonary delayed-type hypersensitivity reaction in the mouse. Role for the tachykinins. J Immunol 153: 4169–4178

    PubMed  CAS  Google Scholar 

  105. Wills-Karp M, Uchida Y, Lee JY, Jinot J, Hirata A, Hirata F (1993) Organ culture with pro-inflammatory cytokines reproduces impairment of the β-adrenoceptor-mediated relaxation in traches of a guinea-pig antigen model. Am J Respir Cell Mol Biol 8: 153–159

    PubMed  CAS  Google Scholar 

  106. Hakonarson H, Herrick DJ, Serrano PG, Grunstein MM (1996) Mechanism of cytokine-induced modulation of beta-adrenoceptor responsiveness in airway smooth muscle. J Clin Invest 97: 2593–2600

    Article  PubMed  CAS  Google Scholar 

  107. Barnes PJ (1995) Beta-adrenergic receptors and their regulation. Am J Respir Crit Care Med 152: 838–860

    PubMed  CAS  Google Scholar 

  108. Laitinen LA, Laitinen A, Heino M, Kava T, Haahtela T (1985) Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis 131: 599–606

    PubMed  CAS  Google Scholar 

  109. Goldie RG, Preuss JMH (1997) Epithelial function and airway responsiveness. In: AG Stewart (ed): Airway wall remodelling in asthma. CRC Press Inc, Boca Raton, 139–178

    Google Scholar 

  110. Fernandes LB, Goldie RG (1989) Co-axial bioassay of an epithelial relaxant factor from the guinea-pig trachea. Br J Pharmacol 97: 117–124

    Article  Google Scholar 

  111. Vanhoutte PM (1988) Epithelium-derived relaxing factor(s) and bronchial reactivity. Am Rev Respir Dis 138: S24–S30

    PubMed  CAS  Google Scholar 

  112. Sparrow MP, Omani TI, Mitchell HAW (1995) The epithelial barrier and airway responsiveness. Can J Physiol Pharmacol 73: 180–190

    Article  PubMed  CAS  Google Scholar 

  113. Szczeklik A, Sladek K, Dworski R, Nizankowska E, Soja J, Sheller J, Oates J (1996) Bronchial aspirin challenge causes specific eicosanoid response in aspirin-sensitive asthmatics. Am J Respir Crit Care Med 154: 1608–1614

    PubMed  CAS  Google Scholar 

  114. Finnerty JP, Twentyman OP, Harris A, Palmer JB, Holgate ST (1991) Effect of GR32191, a potent thromboxane receptor antagonist, on exercise induced bronchoconstriction in asthma. Thorax 46: 190–192

    Article  PubMed  CAS  Google Scholar 

  115. Fennessy MR, Stewart AG, Thompson DC (1986) Aerosolised and intravenously administered leukotrienes: effects on the bronchoconstrictor potency of histamine in the guinea-pig. Br J Pharmacol 87: 741–749

    Article  PubMed  CAS  Google Scholar 

  116. O’Hickey SP, Hawksworth RJ, Fong CY, Arm JP, Spur BW, Lee TH (1991) Leukotrienes C4, D4, and E4 enhance histamine responsiveness in asthmatic airways. Am Rev Respir Dis 144: 1053–1057

    Article  PubMed  Google Scholar 

  117. Ind PW (1996) Anti-leukotriene intervention: is there adequate information for clinical use in asthma? Respir Med 90: 575–586

    Article  PubMed  CAS  Google Scholar 

  118. Taki F, Suzuki R, Torii K, Matsumoto S, Taniguchi H, Takagi K (1994) Reduction of the severity of bronchial hyperresponsiveness by the novel leukotriene antagonist 4-oxo-8- [4-(4-phenyl-butoxy)benzoylamino]-2-(tetrazol-5-y1)-4H-1-benzopyran hemihydrate. Arzneimittel-Forschung 44: 330–333

    PubMed  CAS  Google Scholar 

  119. Rafferty P (1990) Antihistamines in the treatment of clinical asthma. J Allergy Clin Immunol 86: 647–650

    Article  PubMed  CAS  Google Scholar 

  120. Malick A, Grant JA (1997) Antihistamines in the treatment of asthma. Allergy 52: 55–66

    Article  PubMed  CAS  Google Scholar 

  121. Evans DJ, Barnes PJ, Cluzel M, O’Connor BJ (1997) Effects of a potent platelet-acti-vating factor antagonist, SR27417A, on allergen-induced asthmatic responses. Am J Respir Crit Care Med 156: 11–16

    PubMed  CAS  Google Scholar 

  122. Kuitert LM, Angus RM, Barnes NC, Barnes, PJ, Bone MF, Chung KF, Fairfax AJ, Higenbotham TW, O’Connor BJ et al (1995) Effect of a novel potent platelet-activating factor antagonist, modipafant, in clinical asthma. Am J Respir Crit Care Med 151: 1331–1335

    PubMed  CAS  Google Scholar 

  123. Ichinose M, Nakajima N, Takahashi T, Yamauchi H, Inoue H, Takishima, T (1992) Protection against bradykinin-induced bronchoconstriction in asthmatic patients by neurokinin receptor antagonist. Lancet 340: 1248–1251

    Article  PubMed  CAS  Google Scholar 

  124. Bertrand C, Geppetti P (1996) Tachykinin and kinin receptor antagonists: therapeutic perspectives in allergic airway disease. Trends Pharmacol Sci 17: 255–259

    Article  PubMed  CAS  Google Scholar 

  125. Ichinose M, Miura M, Yamauchi H, Kageyama N, Tomaki M, Oyake T, Ohuchi Y, Hida W, Miki H, Tamura G et al (1996) A neurokinin 1-receptor antagonist improves exercise-induced airway narrowing in asthmatic patients. Am J Respir Crit Care Med 153: 936–941

    PubMed  CAS  Google Scholar 

  126. Joos GF, Van Schoor J, Kips JC, Pauwels RA (1996) The effect of inhaled FK224, a tachykinin NK-1 and NK-2 receptor antagonist, on neurokinin A-induced bronchoconstriction in asthmatics. Am J Respir Crit Care Med 153: 1781–1784

    PubMed  CAS  Google Scholar 

  127. Fahy JV, Wong HH, Geppetti P, Reis JM, Harris SC, Maclean DB, Nadel, JA, Boushey HA (1995) Effect of an NK1 receptor antagonist (CP-99,994) on hypertonic saline-induced bronchoconstriction and cough in male asthmatic subjects. Am J Respir Crit Care Med 152: 879–884

    PubMed  CAS  Google Scholar 

  128. Devoy MAB, Fuller RW, Palmer JBD (1995) Are there any detrimental effects of the use of long-acting β-agonists in the treatment of asthma? Chest 107: 1116–1124

    Article  PubMed  CAS  Google Scholar 

  129. Barrett TE, Strom BL (1995) Inhaled beta-adrenoceptor agonists in asthma: more harm than good? Am J Respir Crit Care Med 151: 574–577

    PubMed  CAS  Google Scholar 

  130. Barnes PJ. (1995) Anti-inflammatory mechanisms of glucocorticoids. Biochemical Society Transactions 23: 940–945

    PubMed  CAS  Google Scholar 

  131. Stewart AG, Fernandes D, Tomlinson PR (1995) The effect of glucocorticoids on proliferation of human cultured airway smooth muscle. Br J Pharmacol 116: 3219–3226

    Article  PubMed  CAS  Google Scholar 

  132. Johnson SR, Knox AJ (1997) Synthetic functions of airway smooth muscle in asthma. Trends Pharmacol Sci 18: 289–292

    Google Scholar 

  133. Mak JC, Nishikawa M, Barnes PJ (1995) Glucocorticosteroids increase beta 2-adrenergic receptor transcription in human lung. Am J Physiol 268: L41–L46

    PubMed  CAS  Google Scholar 

  134. Nabishah BM, Morat PB, Kadir BA, Khalid BA (1991) Effect of steroid hormones on muscarinic receptors of bronchial smooth muscle. Gen Pharmacol 22: 389–392

    Article  PubMed  CAS  Google Scholar 

  135. Emala CW, Clancy J, Hirshman CA (1997) Glucocorticoid treatment decreases muscarinic receptor expression in canine airway smooth muscle. Am J Physiol 272: L745–L751

    PubMed  CAS  Google Scholar 

  136. Hardy E, Farahani M, Hall IP (1996) Regulation of histamine H1 receptor coupling by dexamethasone in human cultured airway smooth muscle. Br J Pharmacol 118: 1079–1084

    Article  PubMed  CAS  Google Scholar 

  137. Vadas P, Stefanski E, Wloch M, Grouix B, Van Den Bosch H, Kennedy B (1996) Secretory non-pancreatic phospholipase A2 and cyclooxygenase-2 expression by tracheobronchial smooth muscle cells. Eur J Biochem 235: 557–563

    Article  PubMed  CAS  Google Scholar 

  138. Vigano T, Habib A, Hernandez A, Bonazzi A, Boraschi D, Lebret M, Cassina E, Maclouf J, Sala A, Folco G (1997) Cyclooxygenase-2 and synthesis of PGE2 in human bronchial smooth-muscle cells. Am J Respir Crit Care Med 155: 864–868

    PubMed  CAS  Google Scholar 

  139. Belvisi MG, Saunders MA, Haddad el-B, Hirst SJ, Yacoub MH, Barnes PJ, Mitchell JA (1997) Induction of cyclo-oxygenase-2 by cytokines in human cultured airway smooth muscle cells: novel inflammatory role of this cell type. Br J Pharmacol 120: 910–916

    Article  PubMed  CAS  Google Scholar 

  140. Pang L, Knox AJ (1997) Effect of interleukin-1 beta, tumour necrosis factor-alpha and interferon-gamma on the induction of cyclo-oxygenase-2 in cultured human airway smooth muscle cells. Br J Pharmacol 121: 579–587

    Article  PubMed  CAS  Google Scholar 

  141. Tomlinson PR, Wilson JW, Stewart AG (1994) Inhibition by salbutamol of the proliferation of human airway smooth muscle cells grown in culture. Br J Pharmacol 111: 641–647

    Article  CAS  Google Scholar 

  142. Demoly P, Jaffuel D, Lequeux N, Weksler B, Creminon C, Michel FB, Godard P, Bousquet J (1997) Prostaglandin H synthase 1 and 2 immunoreactivities in the bronchial mucosa of asthmatics. Am J Respir Crit Care Med 155: 670–675

    PubMed  CAS  Google Scholar 

  143. Black PN, Young PG, Skinner SJ (1996) Response of airway smooth muscle cells to TGF-beta 1: effects on growth and synthesis of glycosaminoglycans. Am J Physiol 271: L910–L917

    PubMed  CAS  Google Scholar 

  144. John M, Hirst SJ, Jose PJ, Robichaud A, Berkman N, Witt, C, Twort CH, Barnes PJ, Chung KF (1997) Human airway smooth muscle cells express and release RANTES in response to T helper 1 cytokines: regulation by T helper 2 cytokines and corticosteroids. J Immunol 158: 1841–1847

    PubMed  CAS  Google Scholar 

  145. Saunders MA, Mitchell JA, Seldon PM, Yacoub MH, Barnes PJ, Giembycz MA, Belvisi MG (1997) Release of granulocyte-macrophage colony stimulating factor by human cultured airway smooth muscle cells: suppression by dexamethasone. Br J Pharmacol 120: 545–546

    Article  PubMed  CAS  Google Scholar 

  146. Rajah R, Nunn SE, Herrick DJ, Grunstein MM, Cohen P (1996) Leukotriene D4 induces MMP-1, which functions as an IGFBP protease in human airway smooth muscle cells. Am J Physiol 271: L1014–L1022

    PubMed  CAS  Google Scholar 

  147. Cohen MD, Ciocca V, Panettieri RA Jr (1997) TGF-beta 1 modulates human airway smooth-muscle cell proliferation induced by mitogens. Am J Respir Crit Care Med 16: 85–90

    CAS  Google Scholar 

  148. Fish JE, Shaver JR, Peters SP (1995) Airway hyperresponsiveness in asthma. Is it unique? Chest 107: 154S–156S

    Article  PubMed  CAS  Google Scholar 

  149. Hopp RJ, Bewtra AK, Townley RG (1990) Clinical methods to evaluate airway reactivity. In: DK Agrawal, RG Townley (eds): Airway smooth muscle modulation of receptors and response. CRC Press Inc, Boca Raton, 167–179

    Google Scholar 

  150. Joos GF, Kips JC, Pauwels RA (1993) Direct and indirect bronchial responsiveness. Respir Med 87 (Suppl B): 31–36

    Article  PubMed  Google Scholar 

  151. Takashimi T, Yanai M, Sasaki H (1991) Site of airway hyperreactivity. Am Rev Respir Dis 143: S49–S51

    Google Scholar 

  152. Kuwano K, Bosken CH, Pare PD, Bai TR, Wiggs BR, Hogg, JC (1993) Small airways dimensions in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 148: 1220–1225

    PubMed  CAS  Google Scholar 

  153. Ebina M, Takahashi T, Chiba T, Motomiya M (1993) Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma: a 3-D morphometric study. Am Rev Respir Dis 148: 720–726

    Article  PubMed  CAS  Google Scholar 

  154. Thomson RJ, Bramley AM, Schellenberg RR (1996) Airway muscle stereology: implications for increased shortening in asthma. Am J Respir Crit Care Med 154: 749–757

    PubMed  CAS  Google Scholar 

  155. Lambert RK, Wiggs BR, Kuwano K, Hogg JC, Pare PD (1993) Functional significance of increased airway smooth muscle in asthma and COPD. J Appl Physiol 74: 2771–2781

    CAS  Google Scholar 

  156. Bosken CH, Hards J, Gatter K, Hogg JC (1992) Characterization of the inflammatory reaction in the peripheral airways of cigarette smokers using immunocytochemistry. Am Rev Respir Dis 145: 911–917

    PubMed  CAS  Google Scholar 

  157. James AL, Pare PD, Hogg JC (1989) The mechanics of airway narrowing in asthma. Am Rev Respir Dis 139: 242–246

    Article  CAS  Google Scholar 

  158. Pare PD, Bai TR (1995) The consequences of chronic allergic inflammation. Thorax 50: 328–332

    Article  PubMed  CAS  Google Scholar 

  159. Wiggs BR, Bosken C, Pare PD, James A, Hogg JC (1992) A model of airway narrowing in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 145: 1251–1258

    PubMed  CAS  Google Scholar 

  160. Woolcock AJ, Salome CM, Yan K (1984) The shape of the dose-reponse curve to histamine in asthmatic and normal subjects. Am Rev Respir Dis 130: 71–75

    PubMed  CAS  Google Scholar 

  161. Macklem PT (1996) A theoretical analysis of the effect of airway smooth muscle load on airway narrowing. Am J Respir Crit Care Med 153: 83–89

    PubMed  CAS  Google Scholar 

  162. Skloot G, Permutt S, Togias A (1995) Airway hyperresponsiveness in asthma: a problem of limited smooth muscle relaxation with inspiration. J Clin Invest 96: 2393–2403

    Article  PubMed  CAS  Google Scholar 

  163. Du T, Sapienza S, Wang CG, Renzi PM, Pantano R, Rossi P, Martin JG (1996) Effect of nedocromil sodium on allergen-induced airway responses and changes in the quantity of airway smooth muscle in rats. J Allergy Clin Immunol 98: 400–407

    Article  PubMed  CAS  Google Scholar 

  164. Padrid P, Snook S, Finucane T, Shiue P, Cozzi P, Solway J, Leff AR (1995) Persistent airway hyperresponsiveness and histologic alterations after chronic antigen challenge in cats. Am J Respir Crit Care Med 151: 184–193

    PubMed  CAS  Google Scholar 

  165. Hershenson MB, Abe MK, Kelleher MD, Naureckas ET, Garland A, Zimmermann A, Rubinstein VJ, Solway J (1994) Recovery of airway structure and function after hyperoxic exposure in immature rats. Am J Respir Crit Care Med 149: 1663–1669

    PubMed  CAS  Google Scholar 

  166. Sapienza S, Du T, Eidelman DH, Wang NS, Martin JG (1991) Structural changes in the airways of sensitized brown Norway rats after antigen challenge. Am Rev Respir Dis 144: 423–427

    Article  PubMed  CAS  Google Scholar 

  167. Wang CG, Du T, Xu LJ, Martin JG (1993) Role of leukotriene D4 in allergen-induced increases in airway smooth muscle in the rat. Am Rev Respir Dis 148: 413–417

    Article  PubMed  CAS  Google Scholar 

  168. Dandurand RJ, Xu LJ, Martin JG, Eidelman DH (1993) Airway-parenchymal interdependence and bronchial responsiveness in two highly inbred rat strains. J Appl Physiol 74: 538–544

    PubMed  CAS  Google Scholar 

  169. Zacour ME, Martin JG (1996) Enhanced growth response of airway smooth muscle in inbred rats with airway hyperresponsiveness. Am J Respir Cell Mol Biol 15: 590–599

    PubMed  CAS  Google Scholar 

  170. Stewart AG, Tomlinson PR, Wilson JW. (1995) Regulation of airway wall remodelling: prospects for the development of novel antiasthma drugs. In: JT August, MW Anders, F Murad, JT Coyle (eds): Advances in pharmacology. Academic Press, San Diego, 209–254

    Google Scholar 

  171. Stewart AG, Grigoriadis G, Harris T (1994) Mitogenic actions of endothelin-1 and epidermal growth factor in cultured airway smooth muscle. Clin Exp Pharmacol Physiol 21: 277–285

    Article  PubMed  CAS  Google Scholar 

  172. Glassberg MK, Ergul A, Wanner A, Puett D (1994) Endothelin-1 promotes mitogenesis in airway smooth muscle cells. Am J Respir Cell Mol Biol 10: 316–321

    PubMed  CAS  Google Scholar 

  173. Noveral JP, Rosenberg SM, Anbar RA, Pawlowski NA, Grunstein MM (1992) Role of endothelin-1 in regulating proliferation of cultured rabbit airway smooth muscle cells. Am J Physiol 263: L317–L324

    PubMed  CAS  Google Scholar 

  174. Panettieri RA, Jr., Goldie RG, Rigby PJ, Eszterhas AJ, Hay DW (1996) Endothelin-1- induced potentiation of human airway smooth muscle proliferation: an ETA receptor-mediated phenomenon. Br J Pharmacol 118: 191–197

    Article  PubMed  CAS  Google Scholar 

  175. Dadmanesh F, Wright JL (1997) Endothelin-A receptor antagonist BQ-610 blocks cigarette smoke-induced mitogenesis in rat airways and vessels. Am J Physiol 272: L614- L618

    PubMed  CAS  Google Scholar 

  176. Panettieri RA, Yadvish PA, Kelly AM, Rubinstein NA, Kotlikoff MI (1990) Histamine stimulates proliferation of airway smooth muscle and induces c-fos expression. Am J Physiol 259: L365–L371

    PubMed  CAS  Google Scholar 

  177. Noveral JP, Grunstein MM (1995) Tachykinin regulation of airway smooth muscle cell proliferation. Am J Physiol 269: L339–L343

    PubMed  CAS  Google Scholar 

  178. Panettieri RA, Jr., Leonard T, Luttmann MA, Hay DWP (1997) Pranlukast, but not zafirlukast, inhibits LTD4-induced potentation of human airway smooth muscle proliferation. Am J Respir Crit Care Med 155: A904

    Google Scholar 

  179. Cohen P, Noveral JP, Bhala A, Nunn SE, Herrick DJ, Grunstein MM (1995) Leukotriene D4 facilitates airway smooth muscle cell proliferation via modulation of the IGF axis. Am J Physiol 269: L151–L157

    PubMed  CAS  Google Scholar 

  180. Noveral JP, Grunstein MM (1992) Role and mechanism of thromboxane-induced proliferation of cultured airway smooth muscle cells. Am J Physiol 263: L555–L561

    PubMed  CAS  Google Scholar 

  181. Smith PG, Janiga KE, Bruce MC (1994) Strain increases airway smooth muscle cell proliferation. Am J Respir Cell Mol Biol 10: 85–90

    PubMed  CAS  Google Scholar 

  182. Hirst SJ, Barnes PJ, Twort CH (1996) PDGF isoform-induced proliferation and receptor expression in human cultured airway smooth muscle cells. Am J Physiol 270: L415–L428

    PubMed  CAS  Google Scholar 

  183. Panettieri RA, Jr., Hall IP, Maki CS, Murray RK (1995) alpha-Thrombin increases cytosolic calcium and induces human airway smooth muscle cell proliferation. Am J Respir Cell Mol Biol 13: 205–216

    PubMed  CAS  Google Scholar 

  184. Brown JK, Tyler CL, Jones CA, Ruoss SJ, Hartmann T, Caughey GH (1995) Tryptase, the dominant secretory granular protein in human mast cells, is a potent mitogen for cultured dog tracheal smooth muscle cells. Am J Respir Cell Mol Biol 13: 227–236

    PubMed  CAS  Google Scholar 

  185. Noveral JP, Bhala A, Hintz RL, Grunstein MM, Cohen P (1994) Insulin-like growth factor axis in airway smooth muscle cells. Am J Physiol 267: L761–L765

    PubMed  CAS  Google Scholar 

  186. Lew DB, Rattazzi MC (1991) Mitogenic effect of lysosomal hydrolases on bovine tracheal myocytes in culture. J Clin Invest 88: 1969–1975

    Article  PubMed  CAS  Google Scholar 

  187. Lew DB, Songu-Mize E, Pontow SE, Stahl PD, Rattazzi MC (1994) A mannose receptor mediates mannosyl-rich glycoprotein-induced mitogenesis in bovine airway smooth muscle cells. J Clin Invest 94: 1855–1863

    Article  PubMed  CAS  Google Scholar 

  188. De S, Zelazny ET, Souhrada JF, Souhrada M (1993) Interleukin-1 beta stimulates the proliferation of cultured airway smooth muscle cells via platelet-derived growth factor. Am J Respir Cell Mol Biol 9: 645–651

    PubMed  CAS  Google Scholar 

  189. De S, Zelazny ET, Souhrada JF, Souhrada M (1995) IL-1 beta and IL-6 induce hyperplasia and hypertrophy of cultured guinea pig airway smooth muscle cells. J Appl Physiol 78: 1555–1563

    PubMed  CAS  Google Scholar 

  190. Stewart AG, Tomlinson PR, Fernandes DJ, Wilson JW, Harris T (1995) Tumor necrosis factor alpha modulates mitogenic responses of human cultured airway smooth muscle. Am J Respir Cell Mol Biol 12: 110–119

    PubMed  CAS  Google Scholar 

  191. Amrani Y, Panettieri RA, Frossard N, Bronner C (1996) Activation of the TNFa-p55 receptor induces myocyte proliferation and modulates agonist-evoked calcium transients in cultured human tracheal mast cells. Am J Respir Cell Mol Biol 15: 55–63

    PubMed  CAS  Google Scholar 

  192. Lazaar AL, Albelda SM, Pilewski JM, Brennan B, Pure E, Panettieri RA, Jr (1994) T lymphocytes adhere to airway smooth muscle cells via integrins and CD44 and induce smooth muscle cell DNA synthesis. J Exp Med 180: 807–816

    Article  PubMed  CAS  Google Scholar 

  193. Heuertz RM, Hamann KJ, Hershenson MB, Leff AR (1997) Adhesion of bovine airway smooth muscle cells activates extracellular signal-regulated kinases. Am J Respir Cell Mol Biol 17: 456–461

    PubMed  CAS  Google Scholar 

  194. De S, Zelazny ET, Souhrada JF, Souhrada M (1996) Role of phospholipase C and tyrosine kinase systems in growth response of human airway smooth muscle cells. Am J Physiol 270: L795–L802

    PubMed  CAS  Google Scholar 

  195. Hirst SJ, Webb BL, Giembycz MA, Barnes PJ, Twort CH (1995) Inhibition of fetal calf serum-stimulated proliferation of rabbit cultured tracheal smooth muscle cells by selective inhibitors of protein kinase C and protein tyrosine kinase. Am J Respir Cell Mol Biol 12: 149–161

    PubMed  CAS  Google Scholar 

  196. Kelleher MD, Abe MK, Chao TO, Jain M, Green JM, Solway J, Rosner MR, Hershenson MB (1995) Role of MAP kinase activation in bovine tracheal smooth muscle mitogenesis. Am J Physiol 268: L894–L901

    PubMed  CAS  Google Scholar 

  197. Karpova AY, Abe MK, Li J, Liu PT, Rhee JM, Kuo WL, Hershenson MB (1997) MEK1 is required for PDGF-induced ERK activation and DNA synthesis in tracheal myocytes. Am J Physiol 272: L558–L565

    PubMed  CAS  Google Scholar 

  198. Shapiro PS, Evans JN, Davis RJ, Posada JA (1996) The seven-transmembrane-spanning receptors for endothelin and thrombin cause proliferation of airway smooth muscle cells and activation of the extracellular regulated kinase and c-Jun NH2-terminal kinase groups of mitogen-activated protein kinases. J Biol Chem 271: 5750–5754

    Article  PubMed  CAS  Google Scholar 

  199. Xiong W, Pestell RG, Watanabe G, Li J, Rosner MR, Hershenson MB (1997) Cyclin D1 is required for S phase traversal in bovine tracheal myocytes. Am J Physiol 272: L1205–L1210

    PubMed  CAS  Google Scholar 

  200. Sherr CJ (1996) Cancer cell cycles. Science 274: 1672–1677

    Article  PubMed  CAS  Google Scholar 

  201. Schramm CM, Omlor GJ, Quinn LM, Noveral JP (1996) Methylprednisolone and isoproterenol inhibit airway smooth muscle proliferation by separate and additive mechanisms. Life Sci 59: PL9–14

    Article  PubMed  CAS  Google Scholar 

  202. Young PG, Skinner SJ, Black PN (1995) Effects of glucocorticoids and beta-adrenoceptor agonists on the proliferation of airway smooth muscle. Eur J Pharmacol 273: 137–143

    Article  PubMed  CAS  Google Scholar 

  203. Florio C, Martin JG, Styhler A, Heisler S (1994) Antiproliferative effect of prostaglandin E2 in cultured guinea pig tracheal smooth muscle cells. Am J Physiol 266: L131–L137

    PubMed  CAS  Google Scholar 

  204. Johnson PR, Armour CL, Carey D, Black JL (1995) Heparin and PGE2 inhibit DNA synthesis in human airway smooth muscle cells in culture. Am J Physiol 269: L514–L519

    CAS  Google Scholar 

  205. Tomlinson PR, Wilson JW, Stewart AG (1995) Salbutamol inhibits the proliferation of human airway smooth muscle cells grown in culture: relationship to elevated cAMP levels. Biochem Pharmacol 49: 1809–1819

    Article  PubMed  CAS  Google Scholar 

  206. Stewart AG, Gillzan KM The role of potassium channels in the inhibitory effects of β2- adrenoceptor agonists on DNA synthesis in human cultured airway smooth muscle. Pulmon Pharmacol; in press

    Google Scholar 

  207. Stewart AG, Tomlinson PR, Wilson JW (1997) β2-Adrenoceptor agonist-mediated inhibition of human airway smooth muscle cell proliferation: importance of the duration of β2-adrenoceptor stimulation. Br J Pharmacol 121: 361–368

    Article  PubMed  CAS  Google Scholar 

  208. Stewart AG, Schachte LC, Tomlinson PR, Wilson JW (1997) Inhibition by salbutamol of changes in the levels of cyclin D and p27Kip1 in thrombin-stimulated human cultured airway smooth muscle. Pharmacol Rev Comm 9: 37–40

    CAS  Google Scholar 

  209. Wang ZL, Walker BA, Weir TD, Yarema MC, Roberts CR, Okazawa M, Pare PD, Bai TR (1995) Effect of chronic antigen and beta 2 agonist exposure on airway remodeling in guinea pigs. Am J Respir Crit Care Med 152: 2097–2104

    PubMed  CAS  Google Scholar 

  210. Kilfeather SA, Tagoe S, Perez AC, Okona-Mensa K, Matin R, Page CP (1995) Inhibition of serum-induced proliferation of bovine tracheal smooth muscle cells in culture by heparin and related glycosaminoglycans. Br J Pharmacol 114: 1442–1446

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Basel AG

About this chapter

Cite this chapter

Stewart, A.G. et al. (2000). Airway smooth muscle cells. In: Page, C.P., Banner, K.H., Spina, D. (eds) Cellular Mechanisms in Airways Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8476-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8476-1_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9583-5

  • Online ISBN: 978-3-0348-8476-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics