Skip to main content

Regulation of the pyruvate dehydrogenase complex during the aerobic/anaerobic transition in the development of the parasitic nematode, Ascaris suum

  • Chapter
Alpha-Keto Acid Dehydrogenase Complexes

Part of the book series: MCBU Molecular and Cell Biology Updates ((MCBU))

Abstract

The pyruvate dehydrogenase complex (PDC) occupies a pivotal position in the novel, anaerobic, mitochondrial metabolism of the parasitic nematode, Ascaris suum (Kita, 1992; Komuniecki and Komuniecki, 1995). Adult ascarid muscle mitochondria use unsaturated organic acids, instead of oxygen, as terminal electron-acceptors and acetate, propionate, succinate, and the 2-methyl branched-chain fatty acids, 2-methylbutyrate and 2-methylvalerate, accumulate as end products of carbohydrate metabolism. The tricarboxylic acid cycle is not operative and the NADH-dependent reductions of fumarate and 2-methyl branched-chain enoyl CoAs are coupled to site 1, electron-transport associated energy-generation (Kita, 1992; Ma et al., 1993). Most importantly, from the perspective of pyruvate metabolism, intramitochondrial NADH/NAD+ and acyl CoA/CoA ratios appear to be dramatically elevated, when compared to the corresponding aerobic organelles, and serve as the driving force for the reversal of β–oxidation and the synthesis of branched-chain fatty acids (Kita, 1992; Komuniecki and Komuniecki, 1995). Therefore, it was initially surprising to find a functional PDC and PDHa kinase in these organelles, given the potential for these elevated ratios to reduce PDC activity, either through end product inhibition or stimulation of PDHa kinase and its subsequent phosphorylation and inactivation of the complex. In fact, the PDC is significantly overexpressed in adult ascarid muscle mitochondria and is present in amounts substantially greater than those reported from other eukaryotic sources (Song and Komuniecki, 1994; Thissen et al., 1986). Not surprisingly, both its subunit composition and regulatory properties differ significantly from complexes isolated from aerobic tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrett, J. (1976) Intermediary metabolism in Ascaris eggs. In: H. Van den Bossche (ed.): Biochemistry of Parasites and Host–Parasite Relationships. Elsevier, Amsterdam, pp 117–123.

    Google Scholar 

  • Diaz, F. and Komuniecki, R. (1994) Pyruvate dehydrogenase complexes from the equine nematode, Parascaris equorum, and the canine cestode, Dipylidium caninum, helminths exhibiting anaerobic mitochondrial metabolism. Mol. Biochem. Parasitol. 67: 289–299.

    Article  PubMed  CAS  Google Scholar 

  • Duran, E., Komuniecki, R., Komuniecki, P., Wheelock, M.J., Klingbeil, M. and Johnson, K.R. (1993) Isolation and sequence determination of cDNA clones for the 2-methyl branched chain enoyl CoA reductase from Ascaris suum. J. Biol Chem. 268: 22391–22396.

    PubMed  CAS  Google Scholar 

  • Johnson, K.R., Komuniecki, R., Sun, Y. and Wheelock, M.J. (1992) Characterization of cDNA clones for the alpha subunit of pyruvate dehydrogenase from Ascaris suum. Mol. Biochem. Parasitol. 51: 37–48.

    Article  PubMed  CAS  Google Scholar 

  • Kita, K. (1992) Electron-transfer complex of mitochondria in Ascaris suum. Parasitol. Today 8: 155–159.

    Article  PubMed  CAS  Google Scholar 

  • Komuniecki, P.R. and Vanover, L. (1987) Biochemical changes during the aerobic-anaerobic transition in Ascaris suum larvae. Mol. Biochem. Parasitol. 22: 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Komuniecki, R., Campbell, T. and Rubin, N. (1987) Anaerobic metabolism in Ascaris suum: acyl CoA intermediates in isolated mitochondria synthesizing 2–methyl branched-chain fatty acids. Mol. Biochem. Parasitol. 24: 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Komuniecki, R. and Thissen, J. (1989) The pyruvate dehydrogenase complex from anaerobic mitochondria of the parasitic nematode Ascaris suum: Stoichiometry of phosphorylation and inactivation. Ann. N.Y. Acad. Sci. 573: 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Komuniecki, R., Rhee, R., Bhat, D., Duran, E., Sidawy, E. and Song, H. (1992) The pyruvate dehydrogenase complex from the parasitic nematode Ascaris suum: novel subunit composition and domain structure of the dihydrolipoyl transacetylase component. Arch. Biochem. Biophys. 296: 115–121.

    Article  PubMed  CAS  Google Scholar 

  • Komuniecki, R. and Komuniecki, P. (1995) Aerobic-anaerobic transitions in energy metabolism during the development of the parasitic nematode, Ascaris suum. In: J. Boothroyd and R. Komuniecki (eds): Molecular Approaches to Parasitology. Wiley-Liss Inc., New York, pp 109–121.

    Google Scholar 

  • Liu, S., Baker, J.C. and Roche, T.E. (1995) Binding of the pyruvate dehydrogenase kinase to recombinant constructs containing the inner lipoyl domain of the dihydrolipoyl acetyltransferase component. J. Biol. Chem. 270: 793–800.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Y., Funk, M., Dunham, W.R. and Komuniecki, R. (1993) Purification and characterization of electron-transfer flavoprotein:rhodoquinone oxidoreductase from anaerobic mitochondria of the adult parasitic nematode, Ascaris suum. J. Biol. Chem. 268: 20360–20365.

    PubMed  CAS  Google Scholar 

  • Matuda, S., Nakano, K., Uraguchi, Y., Matso, S. and Saheki, T. (1987) Immunogical identification of a new component of Ascaris pyruvate dehydrogenase complex. Biochim. Biophys. Acta 926: 54–60.

    PubMed  CAS  Google Scholar 

  • Roskoski, R.J. (1983) Assays of protein kinase. Meth. Enzymol. 99: 306–347.

    Google Scholar 

  • Sale, G.J. and Randle, P.J. (1982a) Occupancy of phosphorylation sites in pyruvate dehydrogenase phosphate complex in rat heart in vivo. Relation to proportion of inactive complex and rate of reactivation by phosphatase. Biochem. J. 206: 221 –229.

    PubMed  CAS  Google Scholar 

  • Sale, G.J. and Randle, P.J. (1982b) Role of individual phosphorylation sites in inactivation of pyruvate dehydrogenase complex in rat heart mitochondria. Biochem. J. 203: 99–108.

    PubMed  CAS  Google Scholar 

  • Snoep, J.L., Westphal, A.D., Benen, J.A., Texeira de Mattos, M.J., Neijssel, O.M. and de Kok, A. (1992) Isolation and characterization of the pyruvate dehydrogenase complex of the anaerobically grown Enterococcus faecalis. Eur. J. Biochem. 203: 245–250.

    Article  PubMed  CAS  Google Scholar 

  • Song, H. and Komuniecki, R. (1994) Novel regulation of pyruvate dehydrogenase phosphatase purified from anaerobic muscle mitochondria of the adult parasitic nematode, Ascaris suum. J. Biol. Chem. 269: 31573–31578.

    PubMed  CAS  Google Scholar 

  • Sugden, P.H., Kerbey, A.L., Randle, P.J., Waller, C.A. and Reid, K. (1979) Amino acid sequences around the sites of phosphorylation in the pig heart pyruvate dehydrogenase complex. Biochem. J. 181: 419–426.

    PubMed  CAS  Google Scholar 

  • Thissen, J., Desai, S., McCartney, P. and Komuniecki, R. (1986) Improved purification of the pyruvate dehydrogenase complex from Ascaris suum body wall muscle and characterization of PDHa kinase activity. Mol. Biochem. Parasitol. 21: 129–138.

    Article  PubMed  CAS  Google Scholar 

  • Thissen, J. and Komuniecki, R. (1988) Phosphorylation and inactivation of the pyruvate dehydrogenase from the anaerobic parasitic nematode, Ascaris suum. Stoichiometry and amino acid sequence around the phosphorylation sites. J. Biol. Chem. 263: 19092–19097.

    PubMed  CAS  Google Scholar 

  • Vanover-Dettling, L. and Komuniecki, P.R. (1989) Effect of gas phase on carbohydrate metabolism in Ascaris suum larvae. Mol. Biochem. Parasitol. 36: 29–40.

    Article  PubMed  CAS  Google Scholar 

  • Waterson, R., Martin, C., Craxton, M., Huynh, C., Coulson, A., Hillier, L., Durbin, R., Green, P., Shownkeen, R., Halloran, N., Metzstein, M., Hawkins, T., Wilson, R., Berks, M., Du, Z., Thomas, K., Thierry-Mieg, J. and Sulston, J. (1992) A survey of expressed genes in Caenorhabditis elegans. Nature Genet. 1: 114–123.

    Article  Google Scholar 

  • Wheelock, M.J., Komuniecki, R., Duran, E. and Johnson, K.R. (1991) Characterization of cDNA clones for the beta subunit of pyruvate dehydrogenase from Ascaris suum. Mol. Biochem. Parasitol. 45: 9–18.

    Article  PubMed  CAS  Google Scholar 

  • Yeaman, S.J., Hutchenson, E.T., Roche, T.E., Pettit, F.H., Brown, J.R., Reed, L.J., Watson, D.C. and Dixon, G.H. (1978) Sites of phosphorylation on pyruvate dehydrogenase from bovine kidney and heart. Biochem. 17: 2364–2370.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Komuniecki, R., Klingbeil, M., Arnette, R., Walker, D., Diaz, F. (1996). Regulation of the pyruvate dehydrogenase complex during the aerobic/anaerobic transition in the development of the parasitic nematode, Ascaris suum . In: Patel, M.S., Roche, T.E., Harris, R.A. (eds) Alpha-Keto Acid Dehydrogenase Complexes. MCBU Molecular and Cell Biology Updates. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8981-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8981-0_6

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9853-9

  • Online ISBN: 978-3-0348-8981-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics