Skip to main content

Microbiosensors using electrodes made in Si-technology

  • Chapter
  • First Online:
Frontiers in Biosensorics I

Part of the book series: Experientia Supplementum ((EXS,volume 80))

Summary

The combination of electrochemical transducers made in silion technology with chemical and biochemical components has been used to manufacture miniaturized sensor structures. Three different types of sensors have been developed and optimized for practical use: (i) an ion-selective sensor, (ii) a glucose enzyme sensor, (iii) a redox-amplifying sensor for immunosensing. The immunodetection based on the redox recycling of mediator molecules is shown for low and high molecular weight analytes. The sensors have been integrated with miniaturized fluidic components and combined with sensor-related electronics and a common microcontroller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bard, A.J., Crayston, J.A., Kittlesen, G.P., Shea, T.V and Wrigton, M.S. (1986) Digital simulation of the measured electrochemical response of reversible redox couples at microelectrode arrayas: Consequences arising from closely spaced ultramicroelectrodes. Anal. Chem. 58: 2321–2331.

    CAS  Google Scholar 

  • Benecke, W. (1990) Silicon micromachining for microsensors and microactuators. Microelectron. Eng. 11: 73–82.

    CAS  Google Scholar 

  • Daniel, W.C. (1987) General principle of Immunoassay. In: W.C. Daniel and M.T. Perlstein (eds): Immunoassay - a practical guide. Academic Press Inc., London, pp 1.

    Google Scholar 

  • Fiehn, H., Howitz, S. and Pham, M.T. (1995) Components and technology for a fluidic-ISFET- microsystem. In: A.v.d. Berg and P. Bergfeld (eds): Micro Total Analysis Systems. Dordrecht: Kluver Academic Publ., The Netherlands, pp 289–294.

    Google Scholar 

  • Göpel, W. (1994) Biosensors & Bioelectronics: 9 /10: 601–760.

    Google Scholar 

  • Griffith, A. and Cooper, J. (1994) Investigation of biological electron transport at gold nanostructures. Proc. Third World Congress on Biosensors, No. 4.48 New Orleans.

    Google Scholar 

  • Gumprecht, W., Schelter, W., Montag, B., Bos, J.H.A., Eijkang, E.P. and Lachmann, B. (1991) Monitoring of blood pO2 with a thin amperometric sensor. Technical Digest Transducer’ 91: 85–87.

    Google Scholar 

  • Haemmerli, S., Manz, A. and Widmer, H.M. (1992) Use of sensors in chemical analysis - concept of total analysis system. VDI-Ber. 939 (Sensoren): 83–86.

    CAS  Google Scholar 

  • Hintsche, R., Neumann, G., Dransfeld, I., Kampfrath, G., Hoffmann, B. and Scheller, F. (1989) Polyurethane enzyme membranes for chip biosensors. Anal. Letters 22: 2175–2190.

    CAS  Google Scholar 

  • Hintsche, R., Möller, B., Dransfeld, I., Wollenberger, U. and Scheller, F. (1991) Chip biosensors on thin-film metal electrodes. Sensor. Actuator. B4: 287–291.

    CAS  Google Scholar 

  • Hintsche, R., Paeschke, M., Wollenberger, U., Schnakenberg, U., Wagner, B. and Lisec, T. (1994b) Micro Electrode arrays and application to biosensing devices. Biosensors & Bioelectronics 9: 697–705.

    CAS  Google Scholar 

  • Hintsche, R., Kruse, C., Uhlig, A., Paeschke, M., Lisec, T., Schnakenberg, U. and Wagner, B. (1995a) Chemical microsensor systems for medical applications in catheters. Sensor. Actuator. B27: 471–473.

    CAS  Google Scholar 

  • Hintsche, R., Paeschke, M., Seitz, R., Wollenberger, U., Bredehorst, R. and Vogel, C.W. (1995b) Immunoanalysis using nm-thinfilm electrodes and redox labels in microsystems. In: Micro- fabrication Technology for Research and Diagnostics. San Francisco; Cambridge Healthtec Institute, MA, USA.

    Google Scholar 

  • Hua, T.T., Tang, H.T., Lunte, C.F., Halsall, H.B. and Heineman, W.R. (1988) p-Aminophenyl phosphate: an improved substrate for electrochemical enzyme immunoassay. Anal. Chim. Acta 214: 187–195.

    Google Scholar 

  • Izquierdo, A. and de Castro, M. (1994) Ion-selective field-effect transistors and ion-selective electrodes as sensors in dynamic systems. Electroanalysis 7: 505–512.

    Google Scholar 

  • Knoll, M., Cammann, K., Dumschat, C., Eshold, J. and Sundermeier, C. (1994) Micromachined ion-selective electrodes with polymer matrix membranes. Sensor. Actuator. B 21: 71–76.

    Google Scholar 

  • Koudelka, M., Gernet, S. and de Rooij, N.F. (1989) Planar amperometric enzyme based glucose microelectrode. Sensor. Actuator. B 18: 157–165.

    CAS  Google Scholar 

  • Koudelka-Hep, M., Strike, D.J. and de Rooij, N.F. (1993) Miniature electrochemical glucose biosensors. Anal. Chim. Acta 281: 461–466.

    CAS  Google Scholar 

  • Langone, J.J. and Vunakis, H. (1983) Immunochemical techniques, Part A. Methods in Enzymology, vol. 92. New York: Academic Press.

    Google Scholar 

  • Lindner, E., Cosofret, V, Ufer, S., Buck, R., Kusy, R., Ash, B. and Nagle, T. (1993) Flexible (Kapton-based) microsensor arrays of high stability for cardiovascular applications. J. Chem. Farad. Trans. 89 /2: 361–376.

    CAS  Google Scholar 

  • Manz, A., Verpoorte, E.M. J., Raymond, D.E., Effenhauser, C.S., Burggraf, N. and Widmer, H.M. (1995) μ-TAS: miniaturized total chemical analysis systems. In: A. v.d. Berg and P. Bergfeld (eds): Micro Total Analysis Systems. Dordrecht: Kluwer Academic. Publ., The Netherlands, pp 5–23.

    Google Scholar 

  • Murakami, T., Nakamoto, S., Kumura, Jlk Kuriyama, T. and Karube, I. (1986) A microplanar amperometric glucose sensor using an ISFET as a reference electrode. Anal. Lett 22: 1973–1986.

    Google Scholar 

  • Murakami, Y., Takeuchi, T., Yokohama, K., Tamiya, E., Karube, I. and Suda, M. (1993) Integration of enzyme-immobilized column with electrochemical flow cell using micromachining techniques for a glucose detection system. Anal. Chem. 65: 2731–2735.

    CAS  Google Scholar 

  • Niwa, O., Morita, M. and Tabei, H. (1990) Electrochemical behaviour of reversible redox species at interdigitated array electrodes with different geometries: Consideration of redox recycling and collection efficiency. Anal. Chem. 62: 447–452.

    CAS  Google Scholar 

  • Niwa, O., Xu, Y., Halsall, H.B. and Heinemann, W.R. (1993) Small-volume voltametric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay Anal. Chem. 65: 1559–1563.

    CAS  PubMed  Google Scholar 

  • Niwa, O., Tabei, H., Solomon, B.P., Xie, F. and Kissinger, P.T. (1995) Improved detection limit for catecholamines using liquid chromatography- electrochemistry with a carbon interdigitated array microelectrode. J. Chromatogr. B. Biomed. Appl. (1): 21–28.

    Google Scholar 

  • Oesch, U., Amman, D. and Simon, W. (1986) Ion-selective membrane electrodes for clinical use. Clin. Chem. 32: 1448–1459.

    CAS  PubMed  Google Scholar 

  • Paeschke, M., Wollenberger, U., Köhler, C., Lisec, T., Schnakenberg, U. and Hintsche, R. (1995 a) Properties of interdigital electrode arrays with different geometries. Anal. Chim. Acta 305: 126–131.

    CAS  Google Scholar 

  • Paeschke, M., Wollenberger, U., Uhlig, A., Schnakenberg, U., Wagner, B. and Hintsche, R. ( 1995 b) A stacked multichannel amperometric detection system. In: A. v.d. Berg and P. Bergfeld (eds): Micro Total Analysis Systems. Dordrecht: Kluver Academic. Publ., The Netherlands, pp 249–254.

    Google Scholar 

  • Paeschke, M., Wollenberger, U., Lisec, T., Schnakenberg, U. and Hintsche, R. (1995 c) Highly sensitive electrochemical microsensors using submicrometer electrode arrays. Sensor. Actuator. B 27: 394–397.

    Google Scholar 

  • Paeschke, M., Wollenberger, U., Lisec, T., Schnakenberg, U. and Hintsche, R. (1995 c) Highly sensitive electrochemical microsensors using submicrometer electrode arrays. Sensor. Actuator. B 27: 394–397.

    Google Scholar 

  • Reimer, K., Koehler, C., Lisec, T., Schnakenberg, U., Fuhr, G., Hintsche, R. and Wagner, B. (1995) Fabrication of electrode arrays in the quarter micron regime for biotechnological applications. Sensor. Actuator. A (1–203): 66–70.

    Google Scholar 

  • Reinhoudt, D.N., Engbersen, J.F.J., Brzozka, Z., van den Vlekkert, H.H., Honig, G.W.N., Holterman, H.A.J, and Verkerk, U.H. (1994) Development of durable K+-selective chemically modified field effect transistors with functionalised polysiloxane membranes. Anal. Chem. 66: 3618–3623.

    CAS  Google Scholar 

  • Roe, J.N. (1992) Biosensor development. Pharmaceut. Res. vol. 9, no. 7: 835–844.

    CAS  Google Scholar 

  • Scheller, F.W., Heyn, S.P, Wollenberger, U., Pfeiffer, D., Makower, A., Paeschke, M., Neumann, B. and Riedel, K. (1992) Electrochemische Biosensoren - Grundlagen, Anwendungen und Perspektive. Dechema Monographies 126: 201–218.

    CAS  Google Scholar 

  • Shoji, S. and Esashi, M. (1995) Bonding and assembling methods for realizing a μ-TAS. In: A. v.d. Berg and P. Bergfeld (eds): Micro Total Analysis Systems. Dordrecht: Kluver Academic. Publ., The Netherlands, pp 165–180.

    Google Scholar 

  • Sinclair, Y., Hong, J. and Lawrence, K.C.L. (1988) Miniature liquid junction reference electrode with micromashined silicon cavity. Sensor. Actuator. 15: 337–345.

    Google Scholar 

  • Uhlig, A., Schnakenberg, U, Lindner, E., Dietrich, F. and Hintsche, R. (1995) Catheter system for potassium measurements in medical application. Technical Digest Transducer’95, Eurosensors IX: 469–472.

    Google Scholar 

  • Uhlig, A., Schnakenberg, U., Lindner, E., Dietrich, F. and Hintsche, R. (1995) Catheter system for potassium measurements in medical application. Sensor. Actuator. B24 - 25, 899–903.

    Google Scholar 

  • Urban, G., Jobst, G., Keplinger, F., Ascherau, A., Jachimowitz, A. and Kohl, F. (1992) Miniaturized biosensor for integration on flexible polymer carriers. Proc. Biosensors’92. Elsevier, Oxford, pp 467–471.

    Google Scholar 

  • v.d. Berg, A. and Bergfeld, P. (1995) Micro Total Analysis Systems. Dordrecht: Kluver Academic. Publ., The Netherlands.

    Google Scholar 

  • Verpoorte, E.M.J., Schoot, B.H.V, Jeanneret, S., Manz, A. and Rooij, N.F.d. (1994) Silicon- based chemical microsensors and microsystems. ACS Symp. Ser. 561 (INTERFACIAL DESIGN A): 244–254.

    CAS  Google Scholar 

  • Wise, K.D. andNajafi, K. (1991) Microfabrication techniques for integrated sensors and microsystems. Sience 254: 1335–1342.

    CAS  Google Scholar 

  • Wollenberger, U., Paeschke, M. and Hintsche, R. (1994) Interdigitated array microelectrodes for the determination of enzyme activities. Analyst 119: 1245–1249.

    CAS  Google Scholar 

  • Wollenberger, U., Hintsche, R. and Scheller, F. (1995) Biosensors for analytical microsystems. Microsystem Technology 1: 275–283

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Verlag

About this chapter

Cite this chapter

Hintsche, R., Paeschke, M., Uhlig, A., Seitz, R. (1997). Microbiosensors using electrodes made in Si-technology. In: Scheller, F.W., Schubert, F., Fedrowitz, J. (eds) Frontiers in Biosensorics I. Experientia Supplementum, vol 80. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9043-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9043-4_17

  • Published:

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9883-6

  • Online ISBN: 978-3-0348-9043-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics