Skip to main content

Abstract

Mirror symmetry (MS) was discovered several years ago in string theory as a duality between families of 3-dimensional Calabi-Yau manifolds (more precisely, complex algebraic manifolds possessing holomorphic volume elements without zeros). The name comes from the symmetry among Hodge numbers. For dual Calabi-Yau manifolds V, W of dimension n (not necessarily equal to 3) one has

$$\dim {H^p}(V,{\Omega ^q}) = \dim {H^{n - p}}(W,{\Omega ^q}).$$

.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. S. Aspinwall and D. R. Morrison, Topological field theory and rational curves, Comm. Math. Phys. 151 (1993), 245–262.

    Article  MathSciNet  Google Scholar 

  2. M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys. 165 (1994), 311–427.

    Article  MathSciNet  Google Scholar 

  3. A. I. Bondal and M. M. Kapranov, Enhanced triangulated categories, Math. USSR-Sb. 70 (1991), 93–107.

    Article  MathSciNet  Google Scholar 

  4. P. Candelas, X. de la Ossa, P. S. Green, and L. Parkes, A pair of Calabi- Yau manifolds as an exactly soluble superconformal theory, in [Y], pp. 31–95.

    Google Scholar 

  5. B. Dubrovin, Integrable systems in topological field theory, Nuclear Phys. B 379 (1992), 627–685.

    Article  MathSciNet  Google Scholar 

  6. K. Fukaya, Morse homotopy, A°O-category and Floer homologies, MSRI pre-print No. 020–94 (1993).

    Google Scholar 

  7. M. Gerstenhaber and S. D. Schack, Algebraic cohomology and deformation theory, NATO ASI Ser. C (1988), 11–264.

    Chapter  Google Scholar 

  8. M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.

    Article  MathSciNet  Google Scholar 

  9. M. Kontsevich, Formal (non)-commutative symplectic geometry, The Gelfand Mathematical Seminars, 1990–1992 (L. Corwin, I. Gelfand, and J. Lepowsky, eds.), Birkhäuser, Basel and Boston, 1993, pp. 173–187.

    Chapter  Google Scholar 

  10. M. Kontsevich, Enumeration of rational curves via torus actions, MPI preprint and hep-th/9405035 (1994).

    Google Scholar 

  11. M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology and enumerative geometry, Comm. Math. Phys. 164 (1994), 525–562.

    Article  MathSciNet  Google Scholar 

  12. D. R. Morrison, Mirror symmetry and rational curves on quintic threefolds: A guide for mathematicians, J. Amer. Math. Soc. 6 (1993), 223–247.

    Article  MathSciNet  Google Scholar 

  13. Y.-G. Oh, Floer Cohomology of Lagrangian intersections and pseudo-holomorphic discs I, II, Comm. Pure Appl. Math. 46:7 (1993), 949–1012.

    Article  MathSciNet  Google Scholar 

  14. Y. Ruan and G. Tian, Mathematical theory of quantum cohomology, Math. Res. Lett. 1 (1994), 269–278.

    Article  MathSciNet  Google Scholar 

  15. J. Stasheff, On the homotopy associativity of H-spaces I, II, Trans. Amer. Math. Soc. 108 (1963), 275–312.

    Article  MathSciNet  Google Scholar 

  16. J. L. Verdier, Categories dérivées. Quelques resultats (état 0), Séminaire de Geometrie Algébraique du Bois-Marie (SGA 42), Lecture Notes in Math., vol. 569, Springer-Verlag, Berlin and New York. 1977. nn. 262–311.

    Google Scholar 

  17. E. Witten, Topological sigma models. Comm Math. Phys. 118 (1988) 411–449

    Article  MathSciNet  Google Scholar 

  18. E. Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys Differential Geom. 1 (1991). 243–310.

    Article  MathSciNet  Google Scholar 

  19. E. Witten, Mirror manifolds and topological field theory. in [Y], pp. 120–159.

    Google Scholar 

  20. E. Witten, Chern-Simons gauge theory as a string theory, preprint IASSNSHEP-92/45 and hen-th/9207094.

    Google Scholar 

  21. S. T. Yau, ed., Essays on Mirror Manifolds, International Press Co., Hong Kong, 1992.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäser Verlag, Basel, Switzerland

About this paper

Cite this paper

Kontsevich, M. (1995). Homological Algebra of Mirror Symmetry. In: Chatterji, S.D. (eds) Proceedings of the International Congress of Mathematicians. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9078-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9078-6_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9897-3

  • Online ISBN: 978-3-0348-9078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics