Skip to main content

Abstract

In this paper we shall describe numerical methods that were devised for the purpose of computing small scale behavior without either fully resolving the whole solution or explicitly tracking certain singular parts of it. Techniques developed for this purpose include shock capturing, front capturing, and multiscale analysis. Areas in which these methods have recently proven useful include image processing, computer vision, and differential geometry, as well as more traditional fields of physics and engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Alvarez, F. Guichard, P. L. Lions, and J. M. Morel, Axioms and fundamental equations of image processing, Arch. Rational Mech. Anal., 123, (1993), 199–258.

    Article  MathSciNet  Google Scholar 

  2. G. Beylkin, R. Coifman, and V. Rokhlin,Fast wavelet transforms and numerical algorithms, I, Comm. Pure Appl. Math., 64, (1991), 141–184.

    Article  MathSciNet  Google Scholar 

  3. J. Brackbill, D. Kothe, and C. Zemach,A continuum method for modeling surface tension, J. Comput. Phys., 100, (1992), 335–353.

    Article  MathSciNet  Google Scholar 

  4. V. Caselles, F. Catte, T. Coll, and F. Dibos, A geometric model for active contours in image processing, Numer. Math., 66, (1993), 1–31.

    Article  MathSciNet  Google Scholar 

  5. Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher,A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, to appear, J. Comput. Phys., (1994).

    Google Scholar 

  6. S. Chen, B. Merriman, P. Smereka, and S. Osher,A fast level set based algorithm for Stefan problems, preprint, (1994).

    MATH  Google Scholar 

  7. Y. G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 23, (1986), 749–785.

    MathSciNet  MATH  Google Scholar 

  8. R. Coifman and Y. Meyer,Remarques sur l’analyse de Fourier à fenetre, serie I, C. R. Acad. Sci. Paris, 312, (1991), 259–261

    MATH  Google Scholar 

  9. D. Dobson and F. Santosa, An image enhancement for electrical impedance tomography, inverse problems, to appear, (1994).

    Google Scholar 

  10. B. Engquist, E. Fatemi, and S. Osher,Numberical Solution of the High Frequency Asymptotic Expansion for Hyperbolic Equations, In Proceedings of the 10th Annual Review of Processers in Applied Computational Electromagnetics, Monterey, CA, (1994), A. Terzuoli, ed., vol.1, 32–44.

    Google Scholar 

  11. B. Engquist, S. Osher, and S. Zhong, Fast wavelet algorithms for linear evolution equations, SIAM J. Sci. Statist. Comput., 15, (1994), 755–775.

    Article  MathSciNet  Google Scholar 

  12. L. C. Evans, M. Soner, and P. Souganidis, Phase transitions and generalized motion by mean curvature, Comm. Pure Appl. Math., 45, (1992), 1097–1123.

    Article  MathSciNet  Google Scholar 

  13. L. C. Evans and J. Spruck, Motion of level sets by mean curvature, I, J. Differential Geom., 23, (1986), 69–96.

    Article  MathSciNet  Google Scholar 

  14. S. Godunov, A difference scheme for computation of discontinuous solutions of equations of fluid dynamics, Math. Sbornik, 47, (1959), 271–306.

    MATH  Google Scholar 

  15. E. Harabetian and S. Osher,Stabilizing ill-posed problems via the level set approach, preprint, (1994).

    MATH  Google Scholar 

  16. A. Harten, Recent developments in shock capturing schemes, Proc Internat. Congress Math., Kyoto 1990, (1990), 1549–1573.

    MathSciNet  MATH  Google Scholar 

  17. A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy,Uniformly high order accurate essentially nonosdilatory schemes, III, J. Comput. Phys., 71, (1987), 231–303.

    Article  MathSciNet  Google Scholar 

  18. A. Harten and S. Osher,Uniformly high–order accurate nonoscillatory schemes, I, SINUM, 24, (1987), 279–304.

    Article  MathSciNet  Google Scholar 

  19. A. Jiang,Fast Wavelet algorithms for solving linear equations, Ph.D. Prospectus, UCLA Math., (1993).

    Google Scholar 

  20. M. Kang, P. Smereka, B. Merriman, and S. Osher,On moving interfaces by volume preserving velocities or accelerations, preprint, (1994).

    Google Scholar 

  21. R. Kimmel, N. Kiryati, and A. Bruckstein,Sub–pixel distance maps and weighted distance transforms, JMIV, to appear, (1994).

    Google Scholar 

  22. G. Koepfler, C. Lopez, and J. M. Morel,A multiscale algorithm for image segmen¬tation by variational method, SINUM, 31, (1994), 282–299.

    Article  MathSciNet  Google Scholar 

  23. R. Krasny, Computing vortex sheet motion, Proc. Internat. Congress Math., Kyoto 1990, (1990), 1573–1583.

    MathSciNet  MATH  Google Scholar 

  24. P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. Pure Appl. Math., 7, (1954), 159–193.

    Article  MathSciNet  Google Scholar 

  25. P. D. Lax and B. Wendroff, Systems of conservation laws, Comm. Pure Appl. Math., 13, (1960), 217–237.

    MATH  Google Scholar 

  26. P. L. Lions, S. Osher, and L. Rudin,Denoising and deblurring images with con¬strained nonlinear partial differential equations, submitted to SINUM.

    Google Scholar 

  27. P. L. Lions, E. Rouy, and A. Tourin,Shape from shading, viscosity solutions, and edges, Numer. Math., 64, (1993), 323–354.

    Article  MathSciNet  Google Scholar 

  28. B. Merriman, J. Bence, and S. Osher,Motion of multiple junctions: A level set approach, J. Comput. Phys., 112, (1994), 334–363.

    Article  MathSciNet  Google Scholar 

  29. W. Noh and P. Woodward, A simple line interface calculation, Proceeding, Fifth Int’l. Conf. on Fluid Dynamics, A.I. van de Vooran and D. J. Zandberger, eds., Springer-Verlag, (1970).

    Google Scholar 

  30. S. Osher and L. I. Rudin, Feature-oriented image enhancement using shock filters, SINUM, 27, (1990), 919–940.

    Article  Google Scholar 

  31. S. Osher and J. A. Sethian, Fronts propagating with curvature dependent speed, algorithms based on a Hamilton-Jacobi formulation, J. Comput. Phys., Vol 79, (1988), 12–49.

    Article  MathSciNet  Google Scholar 

  32. S. Osher and C.-W. Shu, High-order essentially nonosdilatory schemes for Hamilton-Jacobi equations, SINUM, 28, (1991), 907–922.

    Article  Google Scholar 

  33. A. Rogerson and E. Meiburg, A numerical study of convergence properties of ENO schemes, J. Sci. Comput., 5, (1990), 151–167.

    Article  Google Scholar 

  34. J. G. Rosen, The gradient projection method for nonlinear programming, II, Non-linear constraints, J. SIAM, 9, (1961), 514–532.

    MATH  Google Scholar 

  35. E. Rouy and A. Tourin, A viscosity solution approach to shape from shading, SINUM, 27, (1992), 867–884.

    Article  MathSciNet  Google Scholar 

  36. L. Rudin, Images, numerical analysis of singularities, and shock filters, Caltech Comp. Sc. Dept. Report # TR 5250: 87, (1987).

    Google Scholar 

  37. L. Rudin, G. Koepfler, F. Nordby, and J. M. Morel,Fast variational algorithm for clutter removal through pyramidal domain decomposition, Proceedings SPIE Conference, San Diego, CA, July, 1993.

    Google Scholar 

  38. L. Rudin, S. Osher, and E. Fatemi,Nonlinear total variation based noise removal algorithms, Phys. D, 60, (1992), 259–268.

    Article  MathSciNet  Google Scholar 

  39. L. Rudin, S. Osher, and C. Fu,Total variation based restoration of noisy, blurred images, SINUM, to appear.

    Google Scholar 

  40. R. Sanders,A third order accurate variation nonexpansive difference scheme for a single nonlinear conservation, Math. Comp., 51, (1988), 535–558.

    Article  MathSciNet  Google Scholar 

  41. J. A. Sethian,Curvature and the evolution of fronts, Comm. Math. Phys., 101, (1985), 487–499.

    Article  MathSciNet  Google Scholar 

  42. J. Sethian and J. Strain,Crystal growth and dendrite solidification, J. Comput. Phys., 98, (1992), 231–253.

    Article  MathSciNet  Google Scholar 

  43. C.-W. Shu,Numerical experiments on the accuracy of ENO and modified ENO schemes, J. Sci. Comput., 5, (1990), 127–150.

    Article  Google Scholar 

  44. C.–W. Shu and S. Osher,Efficient implementation of essentially nonos dilatory schemes I, J. Comput. Phys., 77, (1988), 439–471.

    Article  MathSciNet  Google Scholar 

  45. C.-W. Shu and S. Osher,Efficient implementation of essentially nonos dilatory schemes II, J. Comput. Phys., 83, (1989), 32–78.

    Article  MathSciNet  Google Scholar 

  46. M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to incompressible two phase flow, to appear, J. Comput. Phys., (1994).

    MATH  Google Scholar 

  47. B. Van Leer,Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method, J. Comput. Phys., 32, (1979), 101–136.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhaäser Verlag, Basel, Switzerland

About this paper

Cite this paper

Osher, S. (1995). Subscale Capturing in Numerical Analysis. In: Chatterji, S.D. (eds) Proceedings of the International Congress of Mathematicians. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-9078-6_141

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9078-6_141

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9897-3

  • Online ISBN: 978-3-0348-9078-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics