Skip to main content

Survival, growth and function of damaged cholinergic neurons

  • Chapter
Central Cholinergic Synaptic Transmission

Part of the book series: Experientia Supplementum ((EXS,volume 57))

Summary

Recent progress has been made in defining the requirements for survival, growth and function of damaged cholinergic neurons of the central nervous system. In particular, the responsiveness of cholinergic neurons to nerve growth factor (NGF) in the regulation of development, cell survival, axon elongation, and response to injury has led to the formulation of the Neurotrophic Hypothesis, a unifying hypothesis of neuronal responsiveness to growth-promoting substances. NGF-mediated effects on cholinergic neurons in culture as well as in the septum, basal nucleus, striatum, and hippocampus, and the ability of NGF to prevent lesion-induced cell death and to ameliorate the effects of aging, provide the foundation for this work. A potential role for glia and microglia in mediating the effects of NGF is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amaral, D. G., and Kurz, J. (1985) An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J. comp. Neurol. 240: 37–59.

    Article  Google Scholar 

  • Appel, S. H. (1981) A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer disease. Ann. Neurol. 10: 400–405.

    Article  Google Scholar 

  • Armstrong, D. M., Saper, C. B., Levey, A. I., Wainer, B. H., and Terry, R. D. (1983) Distribution of cholinergic neurons in rat brain: Demonstrated by the immunocytochemical localization of choline acetyltransferase. J. comp. Neurol. 216: 53–68.

    Article  Google Scholar 

  • Armstrong, D. M., Terry, R. D., Deteresa, R. M., Bruce, G., Hersh, L. B., and Gage, F. H. (1987) Response of septal cholinergic neurons to axotomy. J. comp. Neurol. 264: 421–436.

    Article  Google Scholar 

  • Ayer LeLievre, C. S., Ebendal, T., Olsen, L., and Seiger, A. (1983) Localization of NGF-like immunoreactivity in rat neurons tissue. Med. Biol. 61: 296–304.

    Google Scholar 

  • Banker, G. A. (1980) Tropic interactions between astroglial cells and hippocampal neurons in cultures. Science 209: 809–810.

    Article  Google Scholar 

  • Barde, Y. A., Edgar, D., and Thoenen, H. (1983) New neurotrophic factors. A. Rev. Physiol. 45: 601–612.

    Article  Google Scholar 

  • Bartus, R., Dean, R. L., Beer, C., and Lippa, A. S. (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–417.

    Article  Google Scholar 

  • Batchelor, P. E., Armstrong, D. M., Blaker, S. M., and Gage, F. H. Nerve growth factor receptor and choline acetyltransferase colocalization in neurons within the rat forebrain: Response to fimbria-fornix transection. J. comp. Neurol., in press.

    Google Scholar 

  • Berg, D. K. (1984) New neuronal growth factors. A. Rev. Neurosci. 7: 149–170.

    Article  Google Scholar 

  • Blaker, S. N., Armstrong, D. M., and Gage, F. H. (1988) Cholinergic neurons within the rat hippocampus: Response to fimbria-fornix transection. J. comp. Neurol. 272: 127–138.

    Google Scholar 

  • Buzsaki, G., Bickford, R. G., Varon, S., Armstrong, D. M., and Gage, F. H. (1987) Reconstruction of the damaged septohippocampal circuitry by a combination of fetal grafts and transient NGF infusion. Soc. Neurosci. Abstr. 13: 568.

    Google Scholar 

  • Butcher, L. L. (1983) Acetylcholinesterase histochemistry. Handbook of Chemical Neuroanatomy, Vol. 1. Elsevier, Amsterdam, pp. 1–49.

    Google Scholar 

  • Collins, F., and Crutcher, K. A. (1985) Neurotrophic activity in the adult rat hippocampal formation: Regional distribution and increase after septal lesion. J. Neurosci. 5: 2809–2814.

    Google Scholar 

  • Collins, F., and Dawson, A. (1983) An effect of nerve growth factor on parasympathetic neurite outgrowth. PNAS 80: 2091–2094.

    Article  Google Scholar 

  • Cowan, W. M., Fawcett, J. W., O’Leary, D. D., and Stanfield, B. B. (1984) Regressive events in neurogenesis. Science 225: 1258–1265.

    Article  Google Scholar 

  • Coyle, J. T., Price, P. H., and Delong, M. R. (1983) Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science 219: 1184–1189.

    Article  Google Scholar 

  • Crutcher, K. A. (1987) Sympathetic sprouting in the central nervous system: A model for studies of axonal growth in the mature mammalian brain. Brain Res. Rev. 12: 203–233.

    Article  Google Scholar 

  • Cunningham, T. J. (1982) Naturally occurring neuron death and its regulation by developing neural pathways. Int. Rev. Cytol. 74: 163–186.

    Article  Google Scholar 

  • Daitz, H. M., and Powell, T. P. S. (1985) Studies on the connexions of the fornix system. J. Neurol. Neurosurg. Psychiat. 7: 75–82.

    Google Scholar 

  • Fawcett, J. W., O’Leary, D. D. M., and Cowan, W. M. (1984) Activity and the control of ganglian cell death in the rat retina. PNAS 81: 5589–5593.

    Article  Google Scholar 

  • Fischer, W., Gage, F. H., and Björklund, A. (1988) Degenerative changes in forebrain cholinergic nuclei correlate with cognitive impairments in aged rats. Eur. J. Neurosci., in press.

    Google Scholar 

  • Fischer, W., Wictorin, K., Björklund, A., Williams, L. R., Varon, S., and Gage F. H. (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329: 65–68.

    Article  Google Scholar 

  • Fonnum, F. (1984) Topographical and subcellular localization of choline acetyltransferase in the rat hippocampal region. J. Neurochem. 24: 407–409.

    Article  Google Scholar 

  • Fonnum, F. (1969) Radiochemical micro assays for the determination of choline acetyltransferase and acetylcholinesterase activities. J. Biochem. 115: 465–472.

    Google Scholar 

  • Gage, F. H., Batchelor, P., Chen, K. S., Chin, D., Higgins, G. A., Koh, S., Deputy, S., Rosenberg, M. B., Fischer, W., and Björklund, A. (1989) NGF receptor reexpression and NGF-mediated cholinergic neuronal hypertrophy in the damaged adult neostriatum. Neuron 2: 1177–1184.

    Article  Google Scholar 

  • Gage, F. H., and Björklund, A. (1986) Enhanced graft survival in the hippocampus following selective denervation. Neuroscience 17: 89–98.

    Article  Google Scholar 

  • Gage, F. H., and Björklund, A. (1986a) Neural grafting in the aged rat brain. Ann., Res. Physiol. 48: 447–459.

    Article  Google Scholar 

  • Gage, F. H., and Björklund, A. (1986b) Cholinergic septal grafts into the hippocampal formation improve spatial learning and memory in aged rats by an atrophine sensitive mechanism. J. Neurosci. 2837–2847.

    Google Scholar 

  • Gage, F. H., Björklund, A., Stenevi, U., and Dunnett, S. B. (1983) Functional correlates of compensatory collateral sprouting by aminergic and cholinergic afferents in the hippocampal formation. Brain Res. 268: 39–47.

    Article  Google Scholar 

  • Gage, F. H., Wictorin, K., Ficher, W., Williams, L. R., Varon, S., and Björklund, A. (1986) Life and death of cholinergic neurons: In the septal and diagonal band region following complete fimbria fornix transection. Neuroscience 19: 241–255.

    Article  Google Scholar 

  • Gage, F. H., Blaker, S. N., Davis, G. E., Engvall, E., Varon, S., and Manthorpe, M. (1988) Human amnion membrane matrix as a substratum for axonal regeneration in the central nervous system. Exp. Brain Res., in press.

    Article  Google Scholar 

  • Gage, F. H., Blaker, S. N., Davis, G. E., Engvall, E., Varon, S., and Manthorpe, M. (1988) Human amnion membrane matrix as a substratum for axonal regeneration in the central nervous system. Exp. Brain Res., in press.

    Google Scholar 

  • Gage, F. H., Olinechek, P., and Armstrong, D. M. (1988) Astrocytes are important for NGF-mediated hippocampal sprouting. Exp. Neurol., in press.

    Google Scholar 

  • Gall, C., Rose, G., and Lynch, G. (1979) Proliferative and migratory activities of glial cells in the partially deafferented hippocampus. J. comp. Neurol. 183: 539–550.

    Article  Google Scholar 

  • Giulian, D., and Baker, T. J. (1985) Peptides released by ameloid microglia regulate atroglial proliferation. J. Cell Biol. 101: 2411–2415.

    Article  Google Scholar 

  • Gnahn, H., Hefti, F., Heumann, R., Schwab, M. E., and Thoenen, H. (1983) NGF-mediated increase in choline acetyltransferase ( ChAT) in the neonatal rat forbrain; evidence for physiological role of NGF in the brain? Dev. Brain Res. 9: 45–52.

    Article  Google Scholar 

  • Grady, S., Reeves, T., and Steward, O. (1984) Time course of retrograde degeneration of the cells or origin of the septohippocampal pathway after fimbria-fornix transections. Soc. Neurosci. Abstr. 10: 463.

    Google Scholar 

  • Greene, L., and Shooter, E. M. (1980) The nerve growth factor: Biochemistry, synthesis, and mechanism of action. A. Rev. Neurosci. 3: 353–402.

    Article  Google Scholar 

  • Gundersen, R. W., and Barrett, J. N. (1980) Characterization of the turning response of dorsal root neurites toward nerve growth factor. J. Cell Biol. 87: 546–554.

    Article  Google Scholar 

  • Hamburger, V., and Oppenheim, R. W. (1982) Naturally occurring neuronal death in vertebrates. Neurosci. Com. 1: 55–68.

    Google Scholar 

  • Hattan, M. E., and Liem, R. H. K. (1981) Astroglial cells provide a template for the positioning of developing cerebellar neurons in vitro. J. Cell Biol. 90: 622–630.

    Google Scholar 

  • Hefti, F. (1986) Nerve growth factor (NGF) promotes survival of septal cholinergic neurons after fimbrial transection. J. Neurosci. 6: 2155–2162.

    Google Scholar 

  • Hefti, F., Dravid, A., and Hartikka, J. J. (1984) Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferease activity in adult rats with partial septohippocampal lesions. J. Brain Res. 293: 305–311.

    Article  Google Scholar 

  • Hefti, F., Hartikka, J. J., Echenstein, F., Gnahn, H., Heumann, R., and Schwab, M. (1985) Nerve growth factor increases choline acetyltransferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons. Neuroscience 14: 55–68.

    Article  Google Scholar 

  • Heumann, R., Korsching, S., and Thoenen, H. (1987) Changes of nerve growth factor synthesis in nonneuronal cells in responses to sciatic nerve transection. J. Cell Biol. 104: 1623–1631.

    Article  Google Scholar 

  • Honegger, P., and Lenoir, D. (1982) Nerve growth factor (NGF) stimulation of cholinergic telencephalic neurons in aggregating cell cultures. Dev. Brain Res. 3: 229–238.

    Article  Google Scholar 

  • Kromer, L. F., Bjorklund, A., and Stenevi, U. (1981) Regeneration of the septohippocampal pathways in adult rats is promoted by utilizing embryonic hippocampal implants was bridges. Brain Res. 210: 173–200.

    Article  Google Scholar 

  • Kromer, L. F. (1987) Nerve growth factor treatment after brain injury prevents neuronal death. Science 235: 214–216.

    Article  Google Scholar 

  • Kromer, L. R., and Cornbrooks, C. (1984) Laminin and a Schwann cell surface antigen present within transplants of cultured CNS cells co-localize with CNS axons regenerating in vivo. Soc. Neurosci. Abstr. 10: 1084.

    Google Scholar 

  • Landmeser, L., and Pilar, G. (1978) Interactions between neurons and their targets during in vivo synaptogenesis. Fedn Proc. 37: 2016–2021.

    Google Scholar 

  • Lewis, P. R., Shute, C. C. D., and Silver, A. (1967) Confirmation from choline-acetylase of a massive cholinergic innervation to the rat hippocampus. J. Physiol. 191: 215–224.

    Google Scholar 

  • Liesi, P., Kaakkola, S., Dahl, D., and Vaheri, A. (1984) Laminin is induced in astrocytes of adult brain injury. EMBO J. 683–686.

    Google Scholar 

  • Lindholm, D., Heumann, R., Leyer, M., and Thoenen, H. (1987) Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 330: 658–660.

    Article  Google Scholar 

  • Lindsay, R. M. (1979) Adult rat brain astrocytes support survival of both NGF-dependent and NGF-insensitive neurons. Nature 282: 80–82.

    Article  Google Scholar 

  • Loy, R., and Moore, R. Y. (1977) Anomalous innervation of the hippocampal formation by peripheral synpathetic axons following mechanical injury. Exp. Neurol. 57 (2): 645–650.

    Article  Google Scholar 

  • Manthorpe, M., Nieto-Sampedro, M., Skaper, S. D., Barbin, G., Longo, F. M., Lewis, E. R., Cotman, C. W., and Varon, S. (1983) Neurotrophic activity in brain wounds of the development rat. Correlation with implant survival in the wound cavity. Brain Res. 267: 47–56.

    Article  Google Scholar 

  • Martinez, H. J., Dreyfus, C. F., Jonakait, G. M., and Black, I. B. (1985) Nerve growth factor promotes cholinergic development in brain striatal cultures. PNAS 82: 7777–7781.

    Article  Google Scholar 

  • Mobley, W. C., Rutkowski, J. L., Tennekoon, G. I., Buchanan, K., and Johnston, M. W. (1985) Choline acetyltransferase activity in striatum of neonatal rats increased by nerve growth factor. Science 229: 284–287.

    Article  Google Scholar 

  • Montero, C. N., and Hefti, F. (1988) Rescue of lesioned septal cholinergic neurons by nerve growth factor: Specificity and requirement for chonic treatment. J. Neurosci. 8: 2986–2999.

    Google Scholar 

  • Nieto-Sampedro, M., Manthorpe, M., Barbin, G., Varon, S., and Cotman, C. W. (1983) Injury-induced neuronotrophic activity in adult rat brain: Correlation with survival delayed implants in the wound cavity. J. Neurosci. 3: 2219–2229.

    Google Scholar 

  • Panula, P., Revuelta, A. V., Cheney, D. L., Wu, J.-Y., and Costa, E. (1984) An immunohistochemical study in the location of GABAergic neurons in rat septum. J. comp. Neurol. 222: 69–80.

    Article  Google Scholar 

  • Pearson, R. C. A., Gatter, K. C., and Powell, T. P. S. (1983) Retrograde cell degeneration in the basal nucleus of monkey and man. Brain Res. 261: 321–326.

    Article  Google Scholar 

  • Richardson, P. M., Verge Isse, V. M. K., and Riopelle, R. J. (1986) Distribution of neuronal receptors for nerve growth factor in the rat. J. Neurosci. 6: 2312–2321.

    Google Scholar 

  • Rudge, J. S., Manthorpe, M., and Varon, S. (1985) The output of neuronotrophic and neurite promoting agents from rat brain astroglial cells: A microculture method for screening potential regulatory molecules. Brain Res. 19: 161–172.

    Article  Google Scholar 

  • Schwab, M. E., Otten, U., Agid, Y., and Thoenen, H. (1979) Nerve growth factor (NGF) in the rat CNS: Absence of specific retrograde a xonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Brain Res. 168: 473–483.

    Article  Google Scholar 

  • Scott, S. M., Tarris, R., Eveleth, D., Mansfield, H., Wiechsel, M. E., and Fischer, D. A. (1918) Bioassay detection of mouse nerve growth factor (mNGF) in the brain of adult mice. J. Neurosci. Res. 6: 653–658.

    Article  Google Scholar 

  • Seiler, M., and Schwab, M. E. (1984) Specific retrograde transport of nerve growth factor ( NGF) from cortex to nucleus basalis in the rat. Brain Res. 300: 33–39.

    Article  Google Scholar 

  • Sheldon, D. L., and Reichardt, L. F. (1986) Studies on the expression of the beta-nerve growth factor ( NGF) gene in the central nervous system; level and regional distribution of NGF and mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons. PNAS 83: 2714–2718.

    Article  Google Scholar 

  • Stenevi, U., and Björklund, A. (1978) Growth of vascular sympathetic axons into the hippocampus after lesions of the septohippocampal pathway: A pitfall in brain lesion studies. Neurosci. Lett. 7: 219–224.

    Article  Google Scholar 

  • Storm-Mathisen, J. (1974) Choline acetyltransferase and acetylcholinesterase in fascia dentata following lesions of the entorhinal afferent. J. Brain Res. 80: 119–181.

    Google Scholar 

  • Taniuchi, M., and Johnson, E. M. (1985) Characterization of the binding properties and retrograde axonal transport of monoclonal antibody directed against the rat nerve growth factor receptor. J. Cell Biol. 101: 1100–1106.

    Article  Google Scholar 

  • Taniuchi, M., Schweizer, J. B., and Johnson, E. M. (1986) Nerve growth factor receptor molecules in rat brain. Proc. natl Acad. Sci. USA 83: 1950–1954.

    Article  Google Scholar 

  • Theonen, H., and Barde, Y. A. (1980) Physiology of nerve growth factor. Physiol. Rev. 60: 1284–1335.

    Google Scholar 

  • Ullrich, A., Gray, A., Berman, C., and Dull, T. J. (1983) Human beta-nerve growth factor gene sequence highly homologous to that of mouse. Nature 303: 821–825.

    Article  Google Scholar 

  • Tarris, R. H., Wieschsel, M. E. Jr, and Fisher, D. A. (1986) Synthesis and secretion of a nerve growth-stimulating factor by neonatal mouse astrocyte cells in vitro. Ped. Res. 20: 367–372.

    Article  Google Scholar 

  • Tuszynski, M. H., Buzsdki, G., Stearns, G., and Gage, F. H., (1988) Septal cell death following fimbria/fornix transection, and hippocampal cholinergic regeneration following nerve growth factor infusion plus grafting of synthetic and neuronal bridges. Soc. Neurosci. Abstr.

    Google Scholar 

  • Vijayan, V. K. (1983) Lysosomal enzyme changes in young and aged control and entorhinal-

    Article  Google Scholar 

  • Wainer, B. H., Levey, A. I., Rye, D. B., Mesulam, M., and Mufson, E. J. (1985) Cholinergic and non-cholinergic septohippocampal pathways. Neurosci. Lett. 54: 45–52.

    Article  Google Scholar 

  • Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W.,Coyle, J. T., and Delong, M. R. (1982) Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain. Science 215: 1237–1239.

    Article  Google Scholar 

  • Williams, L. R., Varon, S., Peterson, G. M., Wictorin, K., Fisher, W., Björklund, A., and Gage, F. H. (1986) Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria-fornix transection. Proc. natl Acad. Sci. USA 83: 9231–9235.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhäuser Verlag

About this chapter

Cite this chapter

Gage, F.H., Tuszynski, M.H., Chen, K.S., Armstrong, D., Buzsàki, G. (1989). Survival, growth and function of damaged cholinergic neurons. In: Frotscher, M., Misgeld, U. (eds) Central Cholinergic Synaptic Transmission. Experientia Supplementum, vol 57. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9138-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9138-7_26

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9922-2

  • Online ISBN: 978-3-0348-9138-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics