Skip to main content
  • 516 Accesses

Abstract

Turbulent flows in which all mean (time-averaged) values of functions of the fluctuating velocity field are independent of orientation are said to be “statistically isotropic” (Taylor [1]). The macroscopic motion of turbulent flows in which the turbulence is approximately isotropic seem to be well predicted by the so-called k-ε theory, in which the turbulent fluid at the macroscopic scale is assumed to obey the usual Navier-Stokes equations but the viscosity is allowed to vary as a function of the additional “turbulence variables” k and ε. Here, k denotes the “turbulent kinetic energy” per unit mass and ε denotes the “rate of turbulent energy dissipation.” Additional transport equations for k and ε are posed, both of which are similar in form to the usual energy conservation equation. Alternative, but similar, theories of isotropic turbulence have been constructed using the “mixing length” (Launder and Spalding [2]) or a microscopic “vorticity” scalar ω (Saffman [3]) instead of ε, where these variables are related to k and ε according to ω∝ ε/k and ℓ ∝k 3/2 .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. I. Taylor, Distribution of velocity and temperature between concentric rotating cylinders, Proc. Roy. Soc. Lond. A 151, 494–512 (1935).

    Article  MATH  Google Scholar 

  2. B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence, Academic Press, New York 1972.

    MATH  Google Scholar 

  3. P. G. Saffman, A model for inhomogeneous turbulent flow, Proc. Roy. Soc. Lond. A 317, 417–433 (1970).

    Article  MATH  Google Scholar 

  4. B. E. Launder, G. J. Reece and W. Rodi, Progress in the development of a Reynolds-stress turbulence closure, J. Fluid Mech. 68, 537–566 (1975).

    Article  MATH  Google Scholar 

  5. C. G. Speziale, On nonlinear k-ℓ and k-ε models of turbulence, J. Fluid Mech. 178, 459–475 (1987).

    Article  MATH  Google Scholar 

  6. C. G. Speziale, Invariance of turbulence closure models, Phys. Fluids 22, 1033–1037 (1979).

    Article  MATH  Google Scholar 

  7. C. G. Speziale, Closure relations for the pressure-strain correlation of turbulence, Phys. Fluids 23, 459–463 (1980).

    Article  MATH  Google Scholar 

  8. J. L. Ericksen, Conservation laws for liquid crystals, Trans. Soc. Rheol. 5, 23–34 (1961).

    Article  MathSciNet  Google Scholar 

  9. F. M. Leslie, Some thermal effects in cholesteric liquid crystals, Proc. Roy. Soc. Lond. A 307, 359–372 (1968).

    Article  Google Scholar 

  10. J. S. Marshall and P. M. Naghdi, A thermodynamic theory of turbulence. Part I. Basic developments, Phil. Trans. Roy. Soc. Lond. A 327, 415–448 (1989a).

    Article  MathSciNet  MATH  Google Scholar 

  11. J. S. Marshall and P. M. Naghdi, A thermodynamic theory of turbulence. Part II. Determination of constitutive coefficients and illustrative examples, Phil. Trans. Roy. Soc. Lond. A 327, 449–475 (1989b).

    Article  MathSciNet  MATH  Google Scholar 

  12. J. S. Marshall and P. M. Naghdi, Consequences of the Second Law for a turbulent fluid flow, Continuum Mech. and Thermodynamics 3, 65–77 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  13. J. M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech. 1, 171–199 (1948).

    MathSciNet  Google Scholar 

  14. A. E. Green and P. M. Naghdi, On thermodynamics and the nature of the Second Law, Proc. Roy. Soc. Lond. A 357, 253–270 (1977).

    Article  MathSciNet  Google Scholar 

  15. A. E. Green and P. M. Naghdi, On thermodynamics and the nature of the Second Law for mixtures of interacting continua, Quart. J. Mech. Appl. Math. 31, 265–293 (1978).

    Article  MathSciNet  Google Scholar 

  16. A. E. Green and P. M. Naghdi, On thermal effects in the theory of shells, Proc. Roy. Soc. Lond. A 365, 161–190 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  17. R. G. Deissler, Direction of maximum turbulent vorticity in a shear flow, Phys. Fluids 12, 426–427 (1969).

    Article  Google Scholar 

  18. W. T. Ashurst, A. R. Kerstein, R. M. Kerr and C. H. Gilson, Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence, Phys. Fluids 30(8), 2342–2353 (1987).

    Article  Google Scholar 

  19. R. M. Kerr, Histograms of helicity and strain in numerical turbulence, Phys. Rev. Lett. 59(7), 783–786 (1987).

    Article  Google Scholar 

  20. Z. S. She, E. Jackson and S. A. Orszag, Statistical aspects of vortex dynamics in turbulence, in New Perspectives in Turbulence (edited by L. Sirovich), Springer-Verlag, New York, 315–328, 1991.

    Chapter  Google Scholar 

  21. A. E. Green and P. M. Naghdi, Aspects of the Second Law of thermodynamics in the presence of electromagnetic effects, Quart. J. Mech. Appl. Math. 37, 179–193 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Hanjalic and B. E. Launder, A Reynolds stress model of turbulence and its application to thin shear flows, J. Fluid Mech. 52, 609–638 (1972).

    Article  MATH  Google Scholar 

  23. W. C. Reynolds, Towards a structure-based turbulence model, in Studies in Turbulence (edited by T. B. Gatski, S. Sarkar and C. G. Speziale), Springer-Verlag, New York 1992.

    Google Scholar 

  24. J. Laufer, Investigation of turbulent flow in a two-dimensional channel, NACA Rept. no. 1053, 1247–1265 (1952).

    Google Scholar 

  25. P. S. Bernard, Limitations of the near-wall k-s turbulence model, AIAA J. 24, 619–622 (1986).

    Article  Google Scholar 

  26. J. C. Neu, The dynamics of stretched vortices, J. Fluid Mech. 143, 253–276 (1984).

    Article  MATH  Google Scholar 

  27. B. B. Mandelbrot, Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier, J. Fluid Mech. 62 (2), 331–358 (1974).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Paul M. Naghdi on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Marshall, J.S. (1995). A structural theory of anisotropic turbulence. In: Casey, J., Crochet, M.J. (eds) Theoretical, Experimental, and Numerical Contributions to the Mechanics of Fluids and Solids. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9229-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9229-2_38

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9954-3

  • Online ISBN: 978-3-0348-9229-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics