Skip to main content

A Still Topical Contribution of Gabrio Piola to Continuum Mechanics: The Creation of Peri-dynamics, Non-local and Higher Gradient Continuum Mechanics

  • Chapter
  • First Online:
The complete works of Gabrio Piola: Volume I

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 38))

Abstract

Gabrio Piola’s scientific papers are in some aspects still topical in the mathematical-physics literature. Actually, even if some authors [10] dedicated many efforts to the aim of unveiling the true value of Gabrio Piola as a scientist, some deep parts of his scientific achievements remain not yet sufficiently illustrated. We start our considerations by discussing some of the phenomena which influence the storage and transmission of knowledge, being inspired by the work of Lucio Russo [106]. Subsequently, our aim is to prove that non-local and higher gradient continuum mechanics is rigorously formulated already in Piola’s works and then we try to explain the reasons of the unfortunate circumstance which caused the erasure of the memory of this aspect of his contribution. Finally some relevant differential relationships obtained in Piola [Piola, 1848] are carefully studied, as they are still nowadays too often ignored in the continuum mechanics literature while indeed they can be considered as the starting point of Levi-Civita’s theory of Connection for Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alibert, J.J., Seppecher, P., dell’Isola, F., Truss modular beams with deformation energy depending on higher displacement gradients. Mathematics and Mechanics of Solids, 8, 51-73 (2003).

    Google Scholar 

  2. Askari, E., Bobaru, F., Lehoucq, R.B., Parks, M.L., Silling, S.A., Weckner, O. Peridynamics for multiscale materials modeling, Journal of Physics: Conference Series, 125, art. no. 012078, (2008).

    Google Scholar 

  3. Andreaus, U., Giorgio, I., Lekszycki, T., A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time, Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM), doi:10.1002/zamm.201200182, Published on-line 26th August 2013.

  4. Atai, A.A., Steigmann, D.J., On the nonlinear mechanics of discrete networks, Archive of Applied mechanics, 67, 303-319 (1997).

    Google Scholar 

  5. Auffray, N., dell‘Isola, F., Eremeyev, V., Madeo, A., Rosi, G., Analytical continuum mechanics a la Hamilton-Piola least action principle for second gradinet continua and capillary fluids, Mathematics and Mechanics of Solids, Aug. (2013).

    Google Scholar 

  6. Bedford, A., Hamilton’s principle in continuum mechanics. Vol. 139, Research notes in mathematics, Pitman Advanced Publishing Program, (1985).

    Google Scholar 

  7. Berdichevsky, V., Variational principles of continuum mechanics. Voll. I,II, Springer, (2009).

    Google Scholar 

  8. Boutin, C., Hans, S., Chesnais, C., Generalized beams and continua. Dynamics of reticulated structures. In Mechanics of Generalized Continua (131-141). Springer New York (2011).

    Google Scholar 

  9. Boutin, C., Hans, S., Homogenisation of periodic discrete medium: Application to dynamics of framed structures. Computers and Geotechnics, 30, 303-320 (2003).

    Google Scholar 

  10. Capecchi, D., Ruta, G.C., Piola’s contribution to continuum mechanics, Archive for History of Exact Sciences, 61, 303-342 (2007).

    Google Scholar 

  11. Carcaterra, A., Ensemble energy average and energy flow relationships for nonstationary vibrating systems, Journal of Sound and Vibration, 288, 751-790, (2005).

    Google Scholar 

  12. Carcaterra, A., Akay, A., Dissipation in a finite-size bath, Physical Review E, 84, 011121, (2011).

    Google Scholar 

  13. Carcaterra, A., Akay, A., Theoretical foundations of apparent-damping phenomena and nearly irreversible energy exchange in linear conservative systems, Journal of the Acoustical Society of America, 12, 1971-1982, (2007).

    Google Scholar 

  14. Carcaterra, A., Akay, A., Ko, I.M., Near-irreversibility in a conservative linear structure with singularity points in its modal density, Journal of the Acoustical Society of America, 119, 2141-2149, (2006).

    Google Scholar 

  15. Carcaterra, A., Ciappi, E., Iafrati, A., Campana, E.F., Shock spectral analysis of elastic systems impacting on the water surface, Journal of Sound and Vibration, 229(3), 579-605, (2000).

    Google Scholar 

  16. Carcaterra, A., Sestieri, A., Energy Density Equations and Power Flow in Structures, Journal of Sound and Vibration, 188, 269-282 (1995).

    Google Scholar 

  17. Chesnais, C., Boutin, C., Hans, S., Effects of the local resonance on the wave propagation in periodic frame structures: Generalized Newtonian mechanics, Journal of the Acoustical Society of America, 132, 2873-2886 (2012).

    Google Scholar 

  18. Contrafatto, L., Cuomo, M., A framework of elastic-plastic damaging model for concrete under multiaxial stress states, International Journal of Plasticity, 22, 2272-2300, (2006).

    Google Scholar 

  19. Contrafatto, L., Cuomo, M., A globally convergent numerical algorithm for damaging elasto-plasticity based on the Multiplier method, International Journal for Numerical Methods in Engineering, 63,1089-1125, (2005).

    Google Scholar 

  20. Contrafatto, L., Cuomo, M., A new thermodynamically consistent continuum model for hardening plasticity coupled with damage, International Journal of Solids and Structures, 39, 6241-6271, (2002).

    Google Scholar 

  21. Cosserat, E., Cosserat, F., Thèorie des Corps deformables. Paris: A, Hermann et Fils, (1909).

    Google Scholar 

  22. Culla, A., Sestieri, A., Carcaterra, A., Energy flow uncertainties in vibrating systems: Definition of a statistical confidence factor, Mechanical Systems and Signal Processing, 17, 635-663, (2003).

    Google Scholar 

  23. Cuomo, M., Contrafatto, L., Stress rate formulation for elastoplastic models with internal variables based on augmented Lagrangian regularisation, International Journal of Solids and Structures, 37, 3935-3964, (2000).

    Google Scholar 

  24. Cuomo, M., Ventura, G., Complementary Energy Approach to Contact Problems Based on Consistent Augmented Lagrangian regularization, Mathematical and Computer Modelling, 28, 185-204, (1998).

    Google Scholar 

  25. Daher, N., Maugin, G.A., The method of virtual power in continuum mechanics. Application to media presenting singular surfaces and interfaces, Acta Mechanica, 60, 217-240, (1986).

    Google Scholar 

  26. dell’Isola, F., Gouin, H., Seppecher, P., Radius and surface tension of microscopic bubbles by second gradient theory, Comptes rendus de l’Acadèmie des Sciences Sèrie IIb, 320, 211-216, (1995).

    Google Scholar 

  27. dell’Isola, F., Guarascio, M., Hutter, K., A Variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress principle, Archive of Applied Mechanics, 70, 323-337, (2000).

    Google Scholar 

  28. dell’Isola, F., Hutter, K., What are the dominant thermomechanical processes in the basal sediment layer of large ice sheets? Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454, 1169-1195, (1998).

    Google Scholar 

  29. dell’Isola, F., Placidi, L., Variational principles are a powerful tool also for formulating field theories, in Fancesco dell’Isola and Sergey Gavrilyuk, CISM Course and Lectures. Variational Models and Methods in Solid and Fluid Mechanics. vol. 535, pp. 1-16, Wien, New York: Springer, (2011).

    Google Scholar 

  30. dell’Isola, F., Sciarra, G., Vidoli, S., Generalized Hooke’s law for isotropic second gradient materials. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 465, 2177-2196, (2009).

    Google Scholar 

  31. dell’Isola, F., Seppecher, P., The relationship between edge contact forces, double force and interstitial working allowed by the principle of virtual power, Comptes rendus de l’Acadèmie des Sciences Serie IIb, 321, 303-308, (1995).

    Google Scholar 

  32. dell’Isola, F., Seppecher, P., Madeo, A., How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach à la D’Alembert. Zeitschrift für Angewandte Mathematik und Physik (ZAMP), 63, 1119-1141, (2012).

    Google Scholar 

  33. dell’Isola, F., Vidoli, S., Continuum modelling of piezoelectromechanical truss beams: an application to vibration damping. Archive of Applied Mechanics, 68, 1-19 (1998).

    Google Scholar 

  34. dell’Isola, F., Vidoli, S., Damping of bending waves in truss beams by electrical transmission lines with PZT actuators. Archive of Applied Mechanics, 68, 626-636 (1998).

    Google Scholar 

  35. Demmie, P.N., Silling, S.A., An approach to modeling extreme loading of structures using peridynamics, Journal of Mechanics of Materials and Structures, 2 (10), pp. 1921-1945 (2007).

    Google Scholar 

  36. Di Paola, M., Failla, G., Zingales, M., The mechanically-based approach to 3D non-local linear elasticity theory: Long-range central interactions International Journal of Solids and Structures, 47(18), 2347-2358, (2010).

    Google Scholar 

  37. Di Paola, M., Pirrotta, A., Zingales, M., Mechanically-based approach to non-local elasticity: Variational principles International Journal of Solids and Structures 47(5) 539-548, (2010).

    Google Scholar 

  38. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K., A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Mathematical Models and Methods in Applied Sciences, 23(3), pp. 493-540, (2013).

    Google Scholar 

  39. Emmrich, E., Lehoucq, R.B., Puhst, D., Peridynamics: A nonlocal continuum theory Lecture Notes in Computational Science and Engineering, 89, LNCSE, pp. 45-65, (2013).

    Google Scholar 

  40. Epstein, M., The geometrical language of continuum mechanics, Cambridge, (2010).

    Google Scholar 

  41. Epstein, M., Segev, R., Differentiable manifolds and the principle of virtual workin continuum mechanics. Journal of Mathematical Physics, 21(5):1243-1245, (1980).

    Google Scholar 

  42. Eremeyev, V.A., Freidin A.B., Sharipova L.L., Nonuniqueness and stability in problems of equilibrium of elastic two-phase bodies, Doklady Physics, 48(7), 359-363, (2003).

    Google Scholar 

  43. Eremeyev V.A., Lebedev, L.P., Existence of weak solutions in elasticity, Mathematics and Mechanics of Solids, 18, 204-217, (2013).

    Google Scholar 

  44. Eremeyev, V.A., Pietraszkiewicz, W., The nonlinear theory of elastic shells with phase transitions, Journal of Elasticity, 74, 67-86, (2004).

    Google Scholar 

  45. Eremeyev, V.A., Pietraszkiewicz, W., Thermomechanics of shells undergoing phase transition, Journal of the Mechanics and Physics of Solids, 59, 1395-1412, (2011).

    Google Scholar 

  46. Eringen, A.C., Microcontinuum Field Theories I. Foundations and Solids, Springer Verlag (1999).

    Google Scholar 

  47. Eringen, A.C., Nonlocal continuum field theories, Springer (2002).

    Google Scholar 

  48. Eringen, A.C., Edelen, D.G.B, On nonlocal Elasticity, International Journal of Engineering Sciences, Vol.10, pp.233-248, (1972).

    Google Scholar 

  49. Forest, S., Micromorphic approach for gradient elasticity, viscoplasticity, and damage, Journal of Engineering Mechanics, 135, 117-131, (2009).

    Google Scholar 

  50. Forest, S., Cordero, N.M., Busso, E.P., First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales. Computational Materials Science, 50, 1299-1304, (2011).

    Google Scholar 

  51. Gatignol, R., Seppecher, P., Modelisation of fluid-fluid interfaces with material properties, Journal de Mècanique Thèorique et Appliquée, 225-247 (1986).

    Google Scholar 

  52. Germain, P., La méthode des puissances virtuelles en mécanique des milieux continus. Premiére partie. Théorie du second gradient, Journal de Mécanique, 12, 235-274 (1973).

    Google Scholar 

  53. Germain, P., The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM, Journal of Applied Mathematics 25, 556-575, (1973).

    Google Scholar 

  54. Green, A.E., Rivlin, R.S., Multipolar continuum mechanics, Archive for Rational Mechanics and Analysis, 17, 113-147, (1964).

    Google Scholar 

  55. Green, A.E., Rivlin, R.S., Multipolar continuum mechanics: functional theory. I, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 284, 303-324, (1965).

    Google Scholar 

  56. Green, A.E., Rivlin, R.S., On Cauchy’s equations of motion, Zeitschrift für Angewandte Mathematik und Physik (ZAMP),15, 290-292, (1964).

    Google Scholar 

  57. Green, A.E., Rivlin, R.S., Simple force and stress multipoles, Archive for Rational Mechanics and Analysis,16, 325-353, (1964).

    Google Scholar 

  58. Haseganu, E.M., Steigmann, D.J., Equilibrium analysis of finitely deformed elastic networks. Computational mechanics, 17, 359-373, (1996).

    Google Scholar 

  59. Hellinger, E., Die allgemeinen Ansätze der Mechanik der Kontinua Encyklopädie der mathematischen Wissenschaften. Bd. IV-4, Hft. 5., (1913).

    Google Scholar 

  60. Kroner, E., Mechanics of Generalized Continua, Springer, (1968).

    Google Scholar 

  61. Lagrange, J.L., Mécanique Analytique, Editions Jaques Gabay, Sceaux (1788).

    Google Scholar 

  62. Lebedev, L.P., Cloud, M.J., Eremeyev, V.A., Tensor Analysis with Applications in Mechanics, New Jersey: World Scientific, (2010).

    Google Scholar 

  63. Lehoucq, R.B., Silling, S.A., Force flux and the peridynamic stress tensor, Journal of the Mechanics and Physics of Solids, 56 (4), pp.1566-1577, (2008).

    Google Scholar 

  64. Levi-Civita, T., A Simplified Presentation of Einstein’s Unified Field Equations; Authorized translation into English by John Dougall Blackie & Son Limited, London and Glasgow, (1929).

    Google Scholar 

  65. Levi-Civita, T., Caractéristiques des systèmes différentiels et propagation des ondes [“ Caratteristiche e propagazione ondosa ”], Bologne, Librairie Félix Alcan (réimpr. 1932 pour la trad. en français), 116, (1931).

    Google Scholar 

  66. Levi-Civita, T., The Absolute Differential Calculus (Calculus of Tensors), Dover Editions, (edited by E. Persico 1925 and English translation of 1927 by M. Long).

    Google Scholar 

  67. Luongo, A., Di Egidio, A., Bifurcation equations through multiple-scales analysis for a continuous model of a planar beam. Nonlinear Dynamics, 41, 171-190 (2005).

    Google Scholar 

  68. Luongo, A., Romeo, F., A Transfer-matrix-perturbation approach to the dynamics of chains of nonlinear sliding beams, Journal of Vibration and Acoustics, 128, 190-196, (2006).

    Google Scholar 

  69. Luongo, A., Zulli, D., Piccardo, G., On the effect of twist angle on nonlinear galloping of suspended cables, Computers & Structures, 87, 1003-1014, (2009).

    Google Scholar 

  70. Madeo, A., Djeran-Maigre, I., Rosi, G., Silvani, C., The effect of fluid streams in porous media on acoustic compression wave propagation, transmission, and reflection, Continuum Mechanics and Thermodynamics, 25(2-4), 173-196, (2013).

    Google Scholar 

  71. Madeo, A., Gavrilyuk, S., Propagation of acoustic waves in porous media and their reflection and transmission at a pure-fluid/porousmedium permeable interface, European Journal of Mechanics-A/Solids, 29 (5), 897-910, (2010).

    Google Scholar 

  72. Madeo, A., George, D., Lekszycki, T., Nierenberger, M., Rémond, Y., A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling, Comptes Rendus Mécanique, Volume 340, Issue 8, Pages 575-589, (2012).

    Google Scholar 

  73. Madeo, A., Lekszycki, T., dell’Isola, F., A continuum model for the bio-mechanical interactions between living tissue and bioresorbable graft after bone reconstructive surgery, Comptes Rendus - Mecanique, 339 (10), pp. 625-640, (2011).

    Google Scholar 

  74. Maugin, G.A., The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool. Continuum Mechanics and Thermodynamics, 25, 127-146 (2011).

    Google Scholar 

  75. Maurini, C., dell’Isola, F., del Vescovo, D., Comparison of piezoelectronic networks acting as distributed vibration absorbers, Mechanical Systems and Signal Processing, 18, 1243-1271, (2004).

    Google Scholar 

  76. Maurini, C., Pouget, J., dell’Isola, F., On a model of layered piezoelectric beams including transverse stress effect, International Journal of Solids and Structures, 4, 4473-4502, (2004).

    Google Scholar 

  77. McBride, A.T., Javili, A., Steinmann, P., Bargmann, S., Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion, Journal of the Mechanics and Physics of Solids, 59, 2116-2133, (2011).

    Google Scholar 

  78. McBride, A.T., Mergheim, J., Javili, A., Steinmann, P., Bargmann, S., Micro-to-macro transitions for heterogeneous material layers accounting for in-plane stretch, Journal of the Mechanics and Physics of Solids, 60, 1221-1239, (2012).

    Google Scholar 

  79. Mindlin, R.D., Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis, 16, 51-78 (1964).

    Google Scholar 

  80. Mindlin, R.D., Second gradient of strain and surface tension in linear elasticity, International Journal of Solids and Structures, 1, 417-438, (1965).

    Google Scholar 

  81. Mindlin, R.D., Eshel, N.N., On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures, 4, 109-124, (1968).

    Google Scholar 

  82. Misra, A., Chang, C.S., Effective Elastic Moduli of Heterogeneous Granular Solids, International Journal of Solids and Structures, 30, 2547-2566, (1993).

    Google Scholar 

  83. Misra, A., Ching, W.Y., Theoretical nonlinear response of complex single crystal under multi-axial tensile loading, Scientific Reports, 3, (2013).

    Google Scholar 

  84. Misra, A., Singh, V., Micromechanical model for viscoelastic-materials undergoing damage, Continuum Mechanics and Thermodynamics, 25, 1-16, (2013).

    Google Scholar 

  85. Misra, A., Yang, Y., Micromechanical model for cohesive materials based upon pseudo-granular structure. International Journal of Solids and Structures, 47, 2970-2981, (2010).

    Google Scholar 

  86. Nadler, B., Papadopoulos, P., Steigmann, D.J., Multiscale constitutive modeling and numerical simulation of fabric material, International Journal of Solids and Structures, 43, 206-221, (2006).

    Google Scholar 

  87. Neff, P., A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations, International Journal of Engineering Science, 44 (8-9), pp. 574-594, (2006).

    Google Scholar 

  88. Neff, P., A geometrically exact Cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. Part I: Formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus, Continuum Mechanics and Thermodynamics, 16(6), pp. 577-628, (2004).

    Google Scholar 

  89. Neff, P., A geometrically exact planar cosserat shell-model with microstructure: Existence of minimizers for zero cosserat couple modulus, Mathematical Models and Methods in Applied Sciences, 17 (3), pp. 363-392,.(2007).

    Google Scholar 

  90. Neff, P., Existence of minimizers for a finite-strain micromorphic elastic solid, Royal Society of Edinburgh - Proceedings A, 136 (5), pp. 997-1012,.(2006).

    Google Scholar 

  91. Neff, P., On Korn’s first inequality with non-constant coefficients, Royal Society of Edinburgh - Proceedings A, 132 (1), pp. 221-243,.(2002).

    Google Scholar 

  92. Neff, P., The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric, Zeitschriftfur Angewandte Mathematik und Mechanik (ZAMM), 86 (11), pp. 892-912, (2006).

    Google Scholar 

  93. Neff, P., CheŁmiński, K., A geometrically exact Cosserat shell model for defective elastic crystals. Justification via Γ-convergence, Interfaces and Free Boundaries, 9(4), pp. 455-492, (2007).

    Google Scholar 

  94. Neff, P., Jeong, J., A new paradigm: The linear isotropic Cosserat model with conformally invariant curvature energy, Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM), 89 (2), pp. 107-122, (2009).

    Google Scholar 

  95. Parks, M.L., Lehoucq, R.B., Plimpton, S.J., Silling, S.A., Implementing peridynamics within a molecular dynamics code Comp Phys Comm, 179, 777-783, (2008).

    Google Scholar 

  96. Peano, G., De Latino Sine Flexione. Lingua Auxiliare Internationale, Revista de Mathematica (Revue de Mathématiques), Tomo VIII, pp. 74-83, Fratres Bocca Editores: Torino, (1903).

    Google Scholar 

  97. Pietraszkiewicz, W., Eremeyev, V.A., Konopinska, V., Extended non-linear relations of elastic shells undergoing phase transitions, Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 87, 150-159, (2007).

    Google Scholar 

  98. Piola, G., Sull’applicazione de’ principj della meccanica analitica del Lagrange ai principali problemi. Memoria di Gabrio Piola presentata al concorso del premio e coronata dall’I.R. Istituto di Scienze, ecc. nella solennita del giorno 4 ottobre 1824, Milano, Imp. Regia stamperia, 1825.

    Google Scholar 

  99. Piola, G., La meccanica de’ corpi naturalmente estesi: trattata col calcolo delle variazioni, Milano, Giusti, (1833).

    Google Scholar 

  100. Piola, G., Nuova analisi per tutte le questioni della meccanica molecolare - del Signor Dottore Don Gabrio Piola – Ricevuta adí 21 Marzo 1835, Memorie di Matematica e di Fisica della Società Italiana delle Scienze residente in Modena, 21, pp. 155-321,(1836).

    Google Scholar 

  101. Piola, G., Intorno alle equazioni fondamentali del movimento di corpi qualsivogliono, considerati secondo la naturale loro forma e costituzione - Memoria del Signor Dottor Gabrio Piola - Ricevuta adí 6 Ottobre 1845, Memorie di Matematica e di Fisica della Società Italiana delle Scienze residente in Modena, 24, pp. 1-186, (1848). Translated in this volume.

    Google Scholar 

  102. Piola, G., Di un principio controverso della Meccanica analitica di Lagrange e delle molteplici sue applicazioni – Memoria postuma di Gabrio Piola - (pubblicata per cura del prof. Francesco Brioschi), Memorie dell’I.R. Istituto Lombardo di Scienze, Lettere ed Arti, 6, pp. 389-496, (1856). Translated in this volume.

    Google Scholar 

  103. Placidi, L., Rosi, G., Giorgio, I., Madeo, A., Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials Mathematics and Mechanics of Solids, March 4, doi: 10.1177/1081286512474016, (2013)

  104. Polizzotto, C., Nonlocal elasticity and related variational principles, International Journal of Solids and Structures, 38, pp.7359-7380, (2001).

    Google Scholar 

  105. Quiligotti, S., Maugin, G.A., dell’Isola, F., An Eshelbian approach to the nonlinear mechanics of constrained solid-fluid mixtures, Acta Mechanica, 160, 45-60, (2003).

    Google Scholar 

  106. Rinaldi, A., Lai, Y.-C., Statistical damage theory of 2D lattices: Energetics and physical foundations of damage parameter, International Journal of Plasticity, 23, 1796-1825, (2007).

    Google Scholar 

  107. Rinaldi, A., Krajcinovic, D., Peralta, P., Lai, Y.-C., Lattice models of polycrystalline microstructures: A quantitative approach, Mechanics of Materials, 40, 17-36, (2008).

    Google Scholar 

  108. Rosi, G., Madeo, A., Guyader, J.L., Switch between fast and slow Biot compression waves induced by “second gradient microstructure” at material discontinuity surfaces in porous media, International Journal of Solids and Structures, Volume 50, Issue 10, 15 May, Pages 1721–1746, (2013).

    Google Scholar 

  109. Ricci-Curbastro, G., Levi-Civita, T., “Méthodes de calcul différentiel absolu et leurs applications ”, Mathematische Annalen, Springer Verlag, vol. 54, no 1-2, mars, p. 125_201, (1900).

    Google Scholar 

  110. Russo, L., L’America dimenticata. I rapporti tra le civiltà e un errore di Tolomeo. Mondadori Università, (2013).

    Google Scholar 

  111. Russo, L., The Forgotten Revolution, Springer Verlag, (2003).

    Google Scholar 

  112. Sedov, L.I., Models of continuous media with internal degrees of freedom, Journal of Applied Mathematics and Mechanics, 32, 803-819, (1972).

    Google Scholar 

  113. Sedov, L.I., Variational Methods of constructing Models of Continuous Media. Irreversible Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids, Springer Vienna, 346-358, (1968).

    Google Scholar 

  114. Segev, R.,. Forces and the existence of stresses in invariant continuum mechanics, Journal of Mathematical Physics, 27(1),163-170, (1986).

    Google Scholar 

  115. Segev, R., The geometry of cauchy’s fluxes, Archive for Rational Mechanics andAnalysis, 154(3),183–198, (2000).

    Google Scholar 

  116. Seleson, P., Beneddine, S., Prudhomme, S., A force-based coupling scheme for peridynamics and classical elasticity, Computational Materials Science, 66, pp. 34-49, (2013).

    Google Scholar 

  117. Seppecher, P., A numerical study of a moving contact line in Cahn-Hilliard theory, International Journal of Engineering Science, 34, 977-992, (1996).

    Google Scholar 

  118. Seppecher, P., Equilibrium of a Cahn and Hilliard fluid on a wall: Influence of the wetting properties of the fluid upon the stability of a thin liquid film, European Journal of mechanics B/fluids, 12, 69-84, (1993).

    Google Scholar 

  119. Seppecher, P., Etude d’une Modelisation des Zones Capillaires Fluides: Interfaces et Lignes de Contact, Thése de l’Université Paris VI, Avril, (1987).

    Google Scholar 

  120. Seppecher, P., Etude des conditions aux limites en théorie du second gradient : cas de la capillarité, Comptes rendus de l’Académie des Sciences, 309, 497-502, (1989).

    Google Scholar 

  121. Seppecher, P., Les Fluides de Cahn-Hilliard. Mémoire d’Habilitation à Diriger des Recherches, Université du Sud Toulon Var, (1996).

    Google Scholar 

  122. Seppecher, P., Line Tension Effect upon Static Wetting, Oil and Gas Science and Technology-Rev. IFP, vol 56, 77-81, (2001).

    Google Scholar 

  123. Seppecher, P., Second-gradient theory: application to Cahn-Hilliard fluids, in Continuum Thermomechanics, Springer Netherlands, 379-388, (2002).

    Google Scholar 

  124. Seppecher, P., Thermodynamique des zones capillaires, Annales de Physique, 13, 13-22, (1988).

    Google Scholar 

  125. Silling, S.A., Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces, Journal of the Mechanics and Physics of Solids, 48, 175–209, doi:10.1016/S0022-5096(99)00029-0, (2000).

  126. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E., Peridynamic states and constitutive modeling, Journal of Elasticity, 88(2), pp. 151-184, (2007).

    Google Scholar 

  127. Silling, S.A., Lehoucq, R.B., Convergence of peridynamics to classical elasticity theory, Journal of Elasticity, 93(1), pp. 13-37, (2008).

    Google Scholar 

  128. Soubestre, J., Boutin, C., Non-local dynamic behavior of linear fiber reinforced materials, Mechanics of Materials, 55, 16-32, (2012).

    Google Scholar 

  129. Steeb, H., Diebels, S., Modeling thin films applying an extended continuum theory based on a scalar-valued order parameter – Part I: Isothermal case. International Journal of Solids and Structures, 41, 5071-5085, (2004).

    Google Scholar 

  130. Steigmann, D.J., A concise derivation of membrane theory from three-dimensional nonlinear elasticity, Journal of Elasticity, 97, 97-101, (2009).

    Google Scholar 

  131. Steigmann, D.J., Equilibrium of prestressed networks, Journal of Applied Mathematics (IMA) (Institute of Mathematics and Its Applications), 48, 195-215, (1992).

    Google Scholar 

  132. Steigmann, D.J., Frame-invariant polyconvex strain-energy functions for some anisotropic solids, Mathematics and mechanics of Solids, 8, 497-506, (2003).

    Google Scholar 

  133. Steigmann, D.J., Invariants of the stretch tensors and their application to finite elasticity theory, Mathematics and mechanics of Solids, 7, 393-404, (2002).

    Google Scholar 

  134. Steigmann, D.J., The variational structure of a nonlinear theory for spatial lattices, Meccanica, 31, 441-455, (1996).

    Google Scholar 

  135. Steigmann, D.J., Faulkner, M.G., Variational theory for spatial rods, Journal of Elasticity, 33, 1-26, (1993).

    Google Scholar 

  136. Steigmann, D.J., Ogden, R.W., Elastic surface-substrate interactions, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 455(1982), 437-474, (1999).

    Google Scholar 

  137. Steigmann, D.J., Ogden, R.W., Plane deformations of elastic solids with intrinsic boundary elasticity, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 453(1959), 853-877, (1997).

    Google Scholar 

  138. Steinmann, P., On Boundary Potential Energies in Deformational and Configurational Mechanics, J. Mech. Phys. Solids, Nr. 56, 772-80, (2008).

    Google Scholar 

  139. Steinmann, P., Elizondo, A., Sunyk, R., Studies of validity of the Cauchy-Born rule by direct comparison of continuum and atomistic modelling, Modelling and Simulation in Materials Science and Engineering, 15(1), S271-S281, (2007).

    Google Scholar 

  140. Spivak, M., A comprehensive introduction to differential geometry, Vol. I and II. Second edition. Publish or Perish, Inc., Wilmington, Del., (1979).

    Google Scholar 

  141. Sunyk, R., Steinmann, P., On Higher Gradients in Continuum-Atomistic Modelling, Int. J. Solids Structures, 40(24), 6877-6896, (2003).

    Google Scholar 

  142. Toupin, R.A., Elastic Materials with couple-stresses, Archive for Rational Mechanics and Analysis, 11, 385-414, (1962).

    Google Scholar 

  143. Toupin, R.A., Theories of elasticity with couple-stress, Archive for Rational Mechanics and Analysis, 17, 85-112, (1964).

    Google Scholar 

  144. Truesdell, C., Essays in the Hystory of Mechanics, Springer Verlag, (1968).

    Google Scholar 

  145. Truesdell, C., Toupin, R.A., The Classical field Theories. Handbuch der Physic Band III/1 Springer, (1960).

    Google Scholar 

  146. Yang, Y., Ching, W.Y., Misra, A., Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film, Journal of Nanomechanics and Micromechanics, 1, 60-71, (2011).

    Google Scholar 

  147. Yang, Y., Misra, A., Higher-order stress-strain theory for damage modeling implemented in an element-free Galerkin formulation, Computer Modeling in Engineering and Sciences, 64, 1-36, (2010).

    Google Scholar 

  148. Yang, Y., Misra, A., Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity, International Journal of Solids and Structures, 49, 2500-2514, (2012).

    Google Scholar 

  149. Yeremeyev, V.A., Freidin, A.B. and Sharipova, L.L. The stability of the equilibrium of two-phase elastic solids, Journal of Applied Mathematics and Mechanics (PMM), 71(1), 61-84, (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

dell’Isola, F., Andreaus, U., Placidi, L. (2014). A Still Topical Contribution of Gabrio Piola to Continuum Mechanics: The Creation of Peri-dynamics, Non-local and Higher Gradient Continuum Mechanics. In: dell'Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S. (eds) The complete works of Gabrio Piola: Volume I. Advanced Structured Materials, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-00263-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00263-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00262-0

  • Online ISBN: 978-3-319-00263-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics