Skip to main content

Control of Thermal Contact Conductance Using Interstitial Materials and Coatings

  • Chapter
  • First Online:
Book cover Thermal Contact Conductance

Part of the book series: Mechanical Engineering Series ((MES))

Abstract

As noted in Chapter 1, the actual solid-to-solid contact area, in most mechanical joints, is only a small fraction of the apparent area. The voids between the actual contact spots are usually occupied by some conducting substance such as air. Other interstitial materials may be deliberately introduced to control, that is, either to enhance or to lessen, the TCC: examples include foils, powders, wire screens and epoxies. To enhance the conductance the bare metal surfaces may also be coated with metals of higher thermal conductivity by electroplating or vacuum deposition. Greases and other lubricants also provide alternative means of enhancing the TCC.

An erratum to this chapter is available at 10.1007/978-3-319-01276-6_11

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-01276-6_11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadi PP, Chung DDL (2011) Numerical modeling of the performance of thermal interface materials in the form of paste-coated sheets. J Electron Mater 40:1490–1500

    Article  Google Scholar 

  • Al-Astrabadi FR, O’Callaghan PW, Probert SD, Jones AM (1977) Thermal resistances resulting from commonly used inserts between stainless steel static bearing surfaces. Wear 40(3):339–350

    Article  Google Scholar 

  • Antonetti VW, Yovanovich MM (1985) Enhancement of thermal contact conductance by metallic coatings: theory and experiment. Trans ASME J Heat Transfer 107:513–517

    Article  Google Scholar 

  • Aoyagi Y (2006) Improving thermal interface materials through the liquid component. MS thesis, University of Buffalo, State University of New York

    Google Scholar 

  • Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767 (12 pages)

    Google Scholar 

  • Chung KC, Sheffield JW, Sauer HJ Jr, O’Keefe TJ (1993a) Thermal contact conductance of a phase mixed coating by transitional buffering interface. J Thermophys Heat Transfer 7(2):326–333

    Article  Google Scholar 

  • Chung KC, Benson HK, Sheffield JW (1993b) Thermal contact conductance of coated junctions within microelectronic packages. In: AIAA Paper 93-2774, AIAA 28th thermophys conference American Institute of Aeronautics and Astronautics. Washington, DC

    Google Scholar 

  • Cividino S, Yovanovich MM (1975) A model for predicting the joint conductance of a woven wire screen contacting two solids. Prog Astronaut Aeronaut 39:111–128

    Google Scholar 

  • Cola BA, Xu J, Fisher TS (2009) Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int J Heat Mass Transfer 52:3490–3503

    Google Scholar 

  • Cook RS, Token KH, Calkins RL (1982) A novel concept for reducing thermal contact resistance. In: AIAA/ASME joint conference, St. Louis. American Institute of Aeronautics and Astronautics, New York

    Google Scholar 

  • Cunnington GR Jr (1964) Thermal conductance of filled aluminium and magnesium joints in a vacuum environment. In: ASME Paper 64-WA/HT-40. American Society of Mechanical Engineers, New York

    Google Scholar 

  • Desai AH (2006) Thermal management of small scale electronic systems. PhD thesis, Binghamton University, State University of New York

    Google Scholar 

  • Dryden JR (1983) The effect of a surface coating on the constriction resistance of a spot on an infinite half space. Trans ASME J Heat Transf 105:408–410

    Article  Google Scholar 

  • Fletcher LS, Miller RG (1973) Thermal conductance of gasket materials for spacecraft joints. Prog Astronaut Aeronaut 35:335–349

    Google Scholar 

  • Fletcher LS, Smuda PA, Gyorog DA (1969) Thermal contact resistance of selected low-conductance interstitial materials. AIAA J 7(7):1302–1309

    Article  Google Scholar 

  • Fletcher LS, Cerza MR, Boysen RL (1976) Thermal conductance and thermal conductivity of selected polyethylene materials. Prog Astronaut Aeronaut 49:371–480

    Google Scholar 

  • Fried E, Costello FA (1962) Interface thermal contact resistance problem in space vehicles. ARSJ 32:237–243

    Google Scholar 

  • Fullem TZ (2008) Characterization of the heat transfer properties of thermal interface materials. PhD thesis, Binghamton University, State University of New York

    Google Scholar 

  • Gao Y, Marconnet AM, Panzer MAS, Leblanc S, Dogbe S, Ezzahri Y, Shakouri A, Goodson KE (2010) Nanostructured interfaces for thermoelectrics. J Electron Mater 39:1456–1462

    Google Scholar 

  • Gwinn JP, Webb RL (2003) Performance and testing of thermal interface materials, in thermal challenges in next generation electronic systems. Millpress, Rotterdam, pp 201–210

    Google Scholar 

  • Gyorog DA (1971) Investigation of thermal isolation materials for contacting surfaces. Prog Astronaut Aeronaut 24:310–336

    Google Scholar 

  • Howe T (2006) Evaluation and improvement of thermal pastes for microelectronic cooling. MS thesis, University of Buffalo, State University of New York

    Google Scholar 

  • Hu K (2010) Flexible graphite modified by carbon black paste for use as a thermal interface material. MS thesis, University of Buffalo, State University of New York

    Google Scholar 

  • Kang TK, Peterson GP, Fletcher LS (1990) Effect of metallic coatings on thermal contact conductance of turned surfaces. Trans ASME J Heat Transfer 112:864–871

    Article  Google Scholar 

  • Kharitonov VV, Kokorev LS, Tyurin YuA (1974) Effect of thermal conductivity of surface layer on contact thermal resistance. Atomnaya Energiya 36(4):308–310

    Google Scholar 

  • Koh B, John JE (1965) The effect of foils on thermal contact resistance. In: Paper 65-HT-44, ASME-AIChE heat transfer conference. American Society of Mechanical Engineers, New York

    Google Scholar 

  • Kshirsagar B, Nagaraju J, Krishna Murthy MV (2003) Thermal contact conductance of silicon nitride-coated OFHC copper contacts. Exp Heat Transf 16:273–279

    Article  Google Scholar 

  • Lambert MA, Fletcher LS (1992) A review of thermal contact conductance of junctions with metallic coatings and films. In: AIAA Paper 92-0709, AIAA 30th aerospace meeting, Reno, NV

    Google Scholar 

  • Lambert MA, Fletcher LS (1993) A correlation for the thermal contact conductance of metallic coated metals. In: AIIA 28th thermophys conference paper AIAA 93-2778. American Institute of Aeronautics and Astronautics, Washington, DC

    Google Scholar 

  • Leong C-K (2007) Improving materials for thermal interface and electrical conduction by using carbon. PhD thesis, Binghamton University, State University of New York

    Google Scholar 

  • Leong C-K, Aoyagi Y, Chung DDL (2005) Carbon-black thixotropic thermal pastes for improvingthermal contacts. J Electron Mater 34:1336–1341

    Article  Google Scholar 

  • Li YZ, Madhusudana CV, Leonardi E (2000) Enhancement of thermal contact conductance: effect of metallic coating. Int J Thermophys Heat Transf 14:1–8

    Article  Google Scholar 

  • Madhusudana CV (1994) Control of thermal contact conductance—some practical considerations. In: Balakrishnan AR, Srinivasa Murthy S (eds) Heat and mass transfer. Tata McGraw-Hill, New Delhi, pp 183–188

    Google Scholar 

  • Madhusudana CV, Villanueva EP (1996) Effect of interstitial materials on joint thermal conductance. In: Wilkes KE, Dinwiddie RB, Graves RS (eds) Thermal conductivity 23. Technomic Publishing, Lancaster, pp 553–563

    Google Scholar 

  • Madhusudana CV, Man JKL, Fletcher LS (1996) Effective microhardness for the determination of contact conductance of coated surfaces. In: Proceedings of the 31st national heat transfer conference. ASME HTD 327:139–145

    Google Scholar 

  • Marotta EE, Lambert MA, Fletcher LS (1994) Thermal enhancement coatings and films for microelectronic systems. In: Proceedings of the 10th international heat transfer conference, paper 15-CI-15. Institution of Chemical Engineers, Rugby, UK

    Google Scholar 

  • Mikic B, Carnasciali G (1970) The effect of thermal conductivity of plating material on thermal contact resistance. Trans ASME J Heat Transf 92:475–482

    Article  Google Scholar 

  • Mohs WF, Madhusudana CV, Garimella SV (2000) Constriction resistance in coated joints. In: Proceedings of the 34th national heat transfer conference, Pittsburgh, PA, NHTC2000-12033, pp 1–7

    Google Scholar 

  • O’Callaghan PW, Probert SD (1988) Reducing the thermal resistance of a pressed contact. Appl Energy 30:53–60

    Article  Google Scholar 

  • O’Callaghan PW, Snaith B, Probert SD (1983) Prediction of interfacial filler thickness for minimum thermal contact resistance. AIAA J 21(9):1325–1329

    Article  Google Scholar 

  • Ochterbeck JM, Fletcher LS, Peterson GP (1990) Evaluation of thermal enhancement films for electronic packages. In: Paper 17-Cd-05, 9th international heat transfer conference, Jerusalem. Hemisphere, New York, pp 445–450

    Google Scholar 

  • Olsen E, Garimella SV, Madhusudana CV (2001) Modeling of constriction resistance at coated joints in a gas environment. In: 2nd International symposium on advances in computational heat transfer, Palm Cove, Qld, Australia, May 20–25

    Google Scholar 

  • Olsen EL, Garimella SV, Madhusudana CV (2002) Modeling of constriction resistance in coated joints. J Thermophys Heat Transf 16:207–216

    Article  Google Scholar 

  • Peterson GP, Fletcher LS (1988) Thermal contact conductance in the presence of thin metal foils. In: AIAA Paper 88-0466. American Institute of Aeronautics and Astronautics, Washington, DC

    Google Scholar 

  • Peterson GP, Fletcher LS (1990) Measurement of thermal contact conductance and thermal conductivity. Trans ASME J Heat Transf 112:579–585

    Article  Google Scholar 

  • Pop E, Mann D, Wang Q, Goodson K, Dai H (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6:96–100

    Article  Google Scholar 

  • Prasher R, Chiu C-P, Mahajan R (2004) Thermal interface materials: a brief review of design characteristics and materials. Electron Cool 8:12 Pages

    Google Scholar 

  • Rajamohan V, Madhusudana CV (1998) Characterisation of coated surfaces: prediction of the effective microhardness coated surfaces. In: Hargreaves D, Scott W (eds) Proceedings of the 5th international tribology conference, Queensland University of Technology, Brisbane, pp 519–523

    Google Scholar 

  • Rajamohan V, Madhusudana CV (1999) Numerical model for microhardness testing. In: Hadi MNS, Schmidt LC (eds) Proceedings of the international conference on mechanics of structures, materials and systems, University of Wollongong, pp 207–213

    Google Scholar 

  • Ramamurthi K, Sunil Kumar S, Abilash PM (2007) Thermal contact conductance of molybdenum-sulphide-coated joints at low temperature. J Thermophys Heat Transfer 21:811–813

    Article  Google Scholar 

  • Sauer HJ Jr (1992) Comparative enhancement of thermal contact conductance of various classes of interstitial materials. In: NSF/DITAC workshop, Melbourne, Monash University, Victoria, Australia, pp 103–115

    Google Scholar 

  • Sauer HJ Jr, Remington CR, Stewart WE Jr, Lin JT (1971a) Thermal contact conductance with several interstitial materials. Proc Int Conf Therm Conduct 11:22–23

    Google Scholar 

  • Sauer HJ Jr, Remington CR, Heizer G (1971b) Thermal contact conductance of lubricant films. Proc Int Conf Therm Conduct 11:24–25

    Google Scholar 

  • Shaikh S, Lafdi K, Silverman E (2007) The effect of aCNT interface on the thermal resistance of contacting surfaces. Carbon 45:695–703

    Article  Google Scholar 

  • Sheffield JW, Chung KC (1992) Thermal contact conductance of metal to metal and metal to ceramic joints. In: NSF/DITAC workshop, Melbourne, Monash University, Victoria, Australia, pp 13–18

    Google Scholar 

  • Sinha N, Yeow JTW (2005) Carbon nanotubes for biomedical applications. IEEE Trans Nanobiosci 4:180–195

    Article  Google Scholar 

  • Snaith B, O’Callaghan PW, Probert SD (1984) Interstitial materials for controlling thermal conductances across pressed metallic contacts. Appl Energy 16:175–191

    Article  Google Scholar 

  • Son Y, Pal S, Borca-Tasciuc T, Ajayan P, Siegel R (2008) Thermal resistance of the native interface between vertically aligned multiwalled carbon nanotube arrays and their SiO2/Si substrate. J Appl Phys 103:024911 (7 pages)

    Google Scholar 

  • Teertstra P (2007) Thermal conductivity and contact resistance measurements for adhesives. In: Proceedings of IPACK2007, ASME InterPACK ‘07. IPACK2007-33026, 8 pages

    Google Scholar 

  • Villanueva EP (1997) Thermal contact conductance. PhD thesis, The University of New South Wales

    Google Scholar 

  • Xu J (2006) Carbon nanotube array thermal interfaces. PhD Thesis, Purdue University

    Google Scholar 

  • Xu, J, Fisher TS (2006) Enhancement of thermal interface materials with carbon nanotube arrays. Int J Heat Mass Trans 49:1658–1666

    Google Scholar 

  • Yovanovich MM (1972) Effect of foils upon joint resistance: evidence of optimum thickness. Prog Astronaut Aeronaut 31:227–245

    Google Scholar 

  • Yu C, Saha S, Zhou J, Shi L (2006) Thermal contact resistance and thermal conductivity of a carbon nanofiber. Trans ASME J Heat Trans 128:234–239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. Madhusudana .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Madhusudana, C.V. (2014). Control of Thermal Contact Conductance Using Interstitial Materials and Coatings. In: Thermal Contact Conductance. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-01276-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01276-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01275-9

  • Online ISBN: 978-3-319-01276-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics