Skip to main content

Design for Reliability of Power Electronics in Renewable Energy Systems

  • Chapter
  • First Online:
Use, Operation and Maintenance of Renewable Energy Systems

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Power electronics is the enabling technology for maximizing the power captured from renewable electrical generation, e.g., the wind and solar technology, and also for an efficient integration into the grid. Therefore, it is important that the power electronics are reliable and do not have too many failures during operation which otherwise will increase cost for operation, maintenance and reputation. Typically, power electronics in renewable electrical generation has to be designed for 20–30 years of operation, and in order to do that, it is crucial to know about the mission profile of the power electronics technology as well as to know how the power electronics technology is loaded in terms of temperature and other stressors relevant, to reliability. Hence, this chapter will show the basics of power electronics technology for renewable energy systems, describe the mission profile of the technology and demonstrate how the power electronics is loaded under different stressors. Further, some systematic methods to design the power electronics technology for reliability will be given and demonstrated with two cases—one is a wind power and the other is photovoltaic application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. REN21 (2012) Renewables 2012 global status report. Available at http://www.ren21.net

  2. Website of Vestas Wind Power (2011) Wind turbines overview. Available at http://www.vestas.com/

  3. UpWind project (2011) Design limits and solutions for very large wind turbines. Available at http://www.ewea.org/fileadmin/ewea_documents/documents/upwind/21895_UpWind_Report_low_web.pdf

  4. Lesnicar A, Marquardt R (2003) An innovative modular multilevel converter topology suitable for a wide power range. In: Proceedings of IEEE Bologna powertech conference, pp 1–6

    Google Scholar 

  5. Faulstich S, Lyding P, Hahn B, Tavner P (2009) Reliability of offshore turbines–identifying the risk by onshore experience. In: Proceedings of European offshore wind, Stockholm

    Google Scholar 

  6. Hahn B, Durstewitz M, Rohrig K (2007) Reliability of wind turbines—Experience of 15 years with 1,500 WTs, wind energy. Spinger, Berlin

    Google Scholar 

  7. Blaabjerg F, Ma K (2013) Future on power electronics for wind turbine systems. IEEE J Emerg Sel Top Power Electron 1(3):139–152

    Article  Google Scholar 

  8. Blaabjerg F, Chen Z, Kjaer SB (2004) Power electronics as efficient interface in dispersed power generation systems. IEEE Trans Power Electron 19(4):1184–1194

    Article  Google Scholar 

  9. Chen Z, Guerrero JM, Blaabjerg F (2009) A review of the state of the art of power electronics for wind turbines. IEEE Trans Power Electron 24(8):1859–1875

    Article  Google Scholar 

  10. Blaabjerg F, Liserre M, Ma K (2012) Power electronics converters for wind turbine systems. IEEE Trans Ind Appl 48(2):708–719

    Article  Google Scholar 

  11. Blaabjerg F, Ma K (2013) High power electronics—Key technology for wind turbines. Power electronics for renewable energy systems, transportation and industrial applications, Wiley, Chap. 6

    Google Scholar 

  12. Rodriguez J, Bernet S, Bin W, Pontt JO, Kouro S (2007) Multilevel voltage-source-converter topologies for industrial medium-voltage drives. IEEE Trans Ind Electron 54(6):2930–2945

    Article  Google Scholar 

  13. Kouro S, Malinowski M, Gopakumar K, Pou J, Franquelo LG, Wu B, Rodriguez J, Perez MA, Leon JI (2010) Recent advances and industrial applications of multilevel converters. IEEE Trans Power Electron 57(8):2553–2580

    Google Scholar 

  14. Faulstich A, Stinke JK, Wittwer F (2005) Medium voltage converter for permanent magnet wind power generators up to 5 MW. Proc EPE 2005:1–9

    Google Scholar 

  15. Celanovic N, Boroyevich D (2000) A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters. IEEE Trans Power Electron 15(2):242–249

    Article  Google Scholar 

  16. Srikanthan S, Mishra MK (2010) DC capacitor voltage equalization in neutral clamped inverters for DSTATCOM application. IEEE Trans Ind Electron 57(8)

    Google Scholar 

  17. Zaragoza J, Pou J, Ceballos S, Robles E, Jaen C, Corbalan M (2009) Voltage-balance compensator for a carrier-based modulation in the neutral-point-clamped converter. IEEE Trans Ind Electron 56(2):305–314

    Article  Google Scholar 

  18. Ma K, Blaabjerg F, Xu D (2011) Power devices loading in multilevel converters for 10 MW wind turbines. In: Proceedings of ISIE 2011, pp 340–346

    Google Scholar 

  19. Ma K, Blaabjerg F (2011) Multilevel converters for 10 MW wind turbines. In: Proceedings of EPE’ 2011, Birmingham, pp 1–10

    Google Scholar 

  20. Rodriguez J, Bernet S, Steimer PK, Lizama IE (2010) A survey on neutral-point-clamped inverters. IEEE Trans Ind Electron 57(7):2219–2230

    Article  Google Scholar 

  21. Andresen B, Birk J (2007) A high power density converter system for the Gamesa G10x 4.5 MW Wind turbine. In: Proceedings of EPE’ 2007, pp 1–7

    Google Scholar 

  22. Jones R, Waite P (2011) Optimised power converter for multi-MW direct drive permanent magnet wind turbines. In: Proceeding of EPE’ 2011, pp 1–10

    Google Scholar 

  23. Kjaer SB, Pedersen JK, Blaabjerg F (2005) A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans Ind Appl 41(5):1292–1306

    Google Scholar 

  24. Kjaer SB (2005) Design and control of an inverter for photovoltaic applications. PhD thesis, Department of Energy Technology, Aalborg University, Aalborg, Denmark

    Google Scholar 

  25. Teodorescu R, Liserre M, Rodriguez P (2011) Grid converters for photovoltaic and wind power systems. IEEE/Wiley, NY

    Google Scholar 

  26. Photovoltaic Research Group, Department of Energy Technology, Aalborg University. Available at http://www.et.aau.dk/research-programmes/

  27. Yang Y, Blaabjerg F, Wang H (2014) Low voltage ride-through of single-phase transformerless photovoltaic inverters. IEEE Trans Ind Appl 50(3). doi:10.1109/TIA.2013.2282966

  28. Papanikolaou NP (2013) Low-voltage ride-through concept in flyback inverter-based alternating current—photovoltaic modules. IET Power Electron 6(7):1436–1448

    Article  Google Scholar 

  29. Koutroulis E, Blaabjerg F (2013) Design optimization of transformer-less grid-connected PV inverters including reliability. IEEE Trans Power Electron 28(1):325–335

    Article  Google Scholar 

  30. Meneses D, Blaabjerg F, García O, Cobos JA (2013) Review and comparison of step-up transformerless topologies for photovoltaic AC-module application. IEEE Trans Power Electron 28(6):2649–2663

    Article  Google Scholar 

  31. SMA, SUNNY CENTRAL-High tech solution for solar power stations. Products category brochure. Available at http://www.sma-america.com/

  32. Meinhardt M, Cramer G (2001) Multi-string-converter: the next step in evolution of string-converter technology, In: Proceedings of EPE’01, pp P.1–P.9

    Google Scholar 

  33. Araujo SV, Zacharias P, Mallwitz R (2010) Highly efficient single-phase transformerless inverters for grid-connected PV systems. IEEE Trans Ind Electron 57(9):3118–3128

    Article  Google Scholar 

  34. Gonzalez R, Lopez J, Sanchis P, Marroyo L (2007) Transformerless inverter for single-phase photovoltaic systems. IEEE Trans Power Electron 22(2):693–697

    Article  Google Scholar 

  35. Gonzalez SR, Coloma CJ, Marroyo PL, Lopez TJ, Sanchis GP (2008) Single-phase inverter circuit for conditioning and converting DC electrical energy into AC electrical. International patent application, Pub. No. WO/2008/015298, 7 Feb 2008

    Google Scholar 

  36. Bae Y, Vu T-K, Kim R-Y (2013) Implemental control strategy for grid stabilization of grid-connected PV system based on german grid code in symmetrical low-to-medium voltage network. IEEE Trans Energy Convers 28(3):619–631

    Article  Google Scholar 

  37. Nabae A, Magi H, Takahashi I (1981) A new neutral-point-clamped PWM inverter. IEEE Trans Ind Appl 17(5):518–523

    Google Scholar 

  38. Knaup P (2007) International Patent Application, Pub. No. WO 2007/048420 A1, May 2007

    Google Scholar 

  39. Report of Danish Commission on Climate Change Policy (2010) Green energy—the road to a Danish energy system without fossil fuels. Available at http://www.klimakommissionen.dk/en-US/

  40. Wikipedia (2013) IEC 61400. Avaiable at http://en.wikipedia.org/wiki/IEC_61400#cite_note-woeb-1

  41. Ma K, Liserre M, Blaabjerg F (2013) Lifetime estimation for the power semiconductors considering mission profiles in wind power converter. In: IEEE Trans Power Electr 2014

    Google Scholar 

  42. Wolfgang E, Amigues L, Seliger N, Lugert G (2005) Building-in reliability into power electronics systems. The world of electronic packaging and system integration, pp 246–252

    Google Scholar 

  43. Hirschmann D, Tissen D, Schroder S, De Doncker RW (2005) Inverter design for hybrid electrical vehicles considering mission profiles. IEEE Conf Veh Power Propul 7–9:1–6

    Google Scholar 

  44. Busca C, Teodorescu R, Blaabjerg F, Munk-Nielsen S, Helle L, Abeyasekera T, Rodriguez P (2011) An overview of the reliability prediction related aspects of high power IGBTs in wind power applications. Microelectron Reliab 51(9–11):1903–1907

    Article  Google Scholar 

  45. Wolfgang E (2007) Examples for failures in power electronics systems. Presented at ECPE tutorial on reliability of power electronic systems, Nuremberg, Germany

    Google Scholar 

  46. Yang S, Bryant AT, Mawby PA, Xiang D, Ran L, Tavner P (2011) An industry-based survey of reliability in power electronic converters. IEEE Trans Ind Appl 47(3):1441–1451

    Google Scholar 

  47. Isidori A, Rossi FM, Blaabjerg F, Ma K (2014) Thermal loading and reliability of 10-MW multilevel wind power converter at different wind roughness classes. IEEE Trans Ind Appl 50(1):484–494

    Article  Google Scholar 

  48. Luque A, Hegedus S (2011) Handbook of photovoltaic science and engineering. Wiley, NY (second version)

    Google Scholar 

  49. Iov F, Ciobotaru M, Sera D, Teodorescu R, Blaabjerg F (2007) Power electronics and control of renewable energy systems. In: Proceedings of PEDS’07, pp P6–P28, 27–30 Nov 2007

    Google Scholar 

  50. Wang H, Liserre M, Blaabjerg F (2013) Toward reliable power electronics—challenges, design tools and opportunities. IEEE Ind Electron Mag 7(2):17–26

    Article  Google Scholar 

  51. Ciobotaru M, Teodorescu R, Blaabjerg F (2005) Control of single-stage single-phase PV inverter. In: Proceedings of EPE’05, pp P.1–P.10

    Google Scholar 

  52. Koutroulis E, Blaabjerg F (2012) A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions. IEEE J Photovol 2(2):184–190

    Article  Google Scholar 

  53. Report of the International Renewable Energy Angency (IRENA) (2012) Renewable power generation costs in 2012: an overview. Released in 2013. Available at http://www.irena.org/

  54. Kovanen KO (2013) Photovoltaics and power distribution. Renewable Energy Focus 14(3):20–21

    Article  Google Scholar 

  55. Xue Y, Divya KC, Griepentrog G, Liviu M, Suresh S, Manjrekar M (2011) Towards next generation photovoltaic inverters. In: Proceedings of ECCE’ 11, pp 2467–2474, 17–22 Sept 2011

    Google Scholar 

  56. Rosenwirth D, Strubbe K (2013) Integrating variable renewables as Germany expands its grid. Available at http://www.renewableenergyworld.com/. Accessed on 21 Mar 2013

  57. Yang Y, Enjeti P, Blaabjerg F, Wang H (2014) Suggested grid code modifications to ensure wide-scale adoption of photovoltaic energy in distributed power generation systems. In: IEEE Industry Applications Magazine, accepted, in press, 2014

    Google Scholar 

  58. Kobayashi H (2012) Fault ride through requirements and measures of distributed PV systems in Japan. In: Proceedings of IEEE-PES general meeting, pp 1–6, 22–26 Jul 2012

    Google Scholar 

  59. Military Handbook (1991) Reliability prediction of electronic equipment, MIL-HDBK-217F, 2 Dec 1991

    Google Scholar 

  60. Wang H, Liserre M, Blaabjerg F, Rimmen PP, Jacobsen JB, Kvisgaard T, Landkildehus J (2014) Transitioning to physics-of-failure as a reliability driver in power electronics. IEEE J Emerg Sel Top Power Electron 2(1):97–114

    Article  Google Scholar 

  61. Klutke GA, Kiessler PC, Wortman MA (2003) A critical look at the bathtub curve. IEEE Trans Reliab 52(1):125–129

    Google Scholar 

  62. Website of Vestas Wind Power (2013) Wind turbines classes. Available at http://www.vestas.com/

  63. Website of Vestas Wind Power (2013) Wind turbines overview. Available at http://www.vestas.com/

  64. Website of ABB semiconductor (2014) Avaiable at http://new.abb.com/products/semiconductors

  65. User manual of PLECS blockset version 3.1, March 2011

    Google Scholar 

  66. Graovac D, Purschel M (2009) IGBT power losses calculation using the data-sheet parameters. Infineon application note

    Google Scholar 

  67. Infineon Application Note AN2008-03 (2008) Thermal equivalent circuit models

    Google Scholar 

  68. Kovacevic IF, Drofenik U, Kolar JW (2010) New physical model for lifetime estimation of power modules. In: Proceedings of IPEC, pp 2106–2114

    Google Scholar 

  69. ASTM International, E1049-85 (2005) Standard practices for cycle counting in fatigue analysis

    Google Scholar 

  70. Niesłony A (2009) Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components. Mech Syst Signal Process 23(8):2712–2721

    Article  Google Scholar 

  71. Berner J (2012) Load-cycling capability of HiPak IGBT modules. ABB application note 5SYA 2043-02

    Google Scholar 

  72. Miner MA (1945) Cumulative damage in fatigue. J Appl Mech 12:A159–A164

    Google Scholar 

  73. Kaco, Powador XP500-HV TL central inverter. Available at http://www.kaco-newenergy.com/products/solar-inverters

  74. Wikipedia (2013) List of photovoltaic power stations. Available at http://en.wikipedia.org/wiki/List_of_photovoltaic_power_stations

  75. SMA news (2013) 114 Sunny central 900CP XT inverters from SMA. Available at http://www.sma.de/en/newsroom/current-news.html

  76. Musallam M, Johnson CM (2012) An efficient implementation of the rainflow counting algorithm for life consumption estimation. IEEE Trans Reliab 61(4):978–986

    Article  Google Scholar 

  77. Huang H, Mawby PA (2013) A lifetime estimation technique for voltage source inverters. IEEE Trans Power Electron 28(8):4113–4119

    Article  Google Scholar 

  78. Yang Y, Wang H, Blaabjerg F, Ma K (2013) Mission profile based multi-disciplinary analysis of power modules in single-phase transformerless photovoltaic inverters. In: Proceeding of EPE ECCE Europe’13, pp P.1–P.10

    Google Scholar 

  79. Kerekes T, Teodorescu R, Rodriguez P, Vazquez G, Aldabas E (2011) A new high-efficiency single-phase transformerless PV inverter topology. IEEE Trans Ind Electron 58(1):184–191

    Article  Google Scholar 

  80. Schmidt H, Christoph S, Ketterer J (2003) Current inverter for direct/alternating currents, has direct and alternating connections with an intermediate power store, a bridge circuit, rectifier diodes and a inductive choke. German Patent DE10 221 592 A1, 4 Dec 2003

    Google Scholar 

  81. Sunways, Yield-oriented solar inverters with up to 98 % peak efficiency. Product category. Available at http://www.sunways.eu/en/

  82. Scheuermann U (2013) Pragmatic bond wire model. ECPE workshop, 3–4 Jun 2013

    Google Scholar 

  83. Bryant AT, Mawby PA, Palmer PR, Santi E, Hudgins JL (2008) Exploration of power device reliability using compact device models and fast electrothermal simulation. IEEE Trans Ind Appl 44(3):894–903

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ma, K., Yang, Y., Wang, H., Blaabjerg, F. (2014). Design for Reliability of Power Electronics in Renewable Energy Systems. In: Sanz-Bobi, M. (eds) Use, Operation and Maintenance of Renewable Energy Systems. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-03224-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03224-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03223-8

  • Online ISBN: 978-3-319-03224-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics