Skip to main content

Limit Theorems for Excursion Sets of Stationary Random Fields

  • Chapter
  • First Online:
Modern Stochastics and Applications

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 90))

Abstract

We give an overview of the recent asymptotic results on the geometry of excursion sets of stationary random fields. Namely, we cover a number of limit theorems of central type for the volume of excursions of stationary (quasi-, positively or negatively) associated random fields with stochastically continuous realizations for a fixed excursion level. This class includes in particular Gaussian, Poisson shot noise, certain infinitely divisible, α-stable, and max-stable random fields satisfying some extra dependence conditions. Functional limit theorems (with the excursion level being an argument of the limiting Gaussian process) are reviewed as well. For stationary isotropic C 1-smooth Gaussian random fields similar results are available also for the surface area of the excursion set. Statistical tests of Gaussianity of a random field which are of importance to real data analysis as well as results for an increasing excursion level round up the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, R.: On generalizing the notion of upcrossings to random fields. Adv. Appl. Probab. 8(4), 789–805 (1976)

    Article  MATH  Google Scholar 

  2. Adler, R.: The Geometry of Random Fields. J. Wiley & Sons, Chichester (1981)

    MATH  Google Scholar 

  3. Adler, R., Samorodnitsky, G., Taylor, J.: Excursion sets of three classes of stable random fields. Adv. Appl. Probab. 42, 293–318 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Adler, R., Taylor, J.: Random Fields and Geometry. Springer, New York (2007)

    MATH  Google Scholar 

  5. Adler, R.J., Taylor, J.E., Worsley, K.J.: Applications of random fields and geometry: Foundations and case studies. Springer Series in Statistics Springer, New York (2009) (In preparation). Http://webee.technion.ac.il/people/adler/hrf.pdf

  6. Azais, J.M., Wschebor, M.: Level Sets and Extrema of Random Processes and Fields. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  7. Belyaev, Y.K.: On the number of intersections of a level by a Gaussian stochastic process, I. Theor. Probab. Appl. 11(1), 106–113 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  8. Belyaev, Y.K.: On the number of intersections of a level by a Gaussian stochastic process, II. Theor. Probab. Appl. 12(3), 392–404 (1967)

    Article  MathSciNet  Google Scholar 

  9. Belyaev, Y.K., Nosko, V.P.: Characteristics of excursions above a high level for a Gaussian process and its envelope. Theor. Probab. Appl. 14(2), 296–309 (1969)

    Article  Google Scholar 

  10. Berman, S.M.: Sojourns and extremes of stochastic processes. Wadsworth & Brooks, CA (1992)

    MATH  Google Scholar 

  11. Billingsley, P.: Convergence of probability measures, 2nd edn. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York (1999)

    Google Scholar 

  12. Bordenave, C., Chafaï, D.: Around the circular law. Probab. Surv. 9, 1–89 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bradley, R.C.: Introduction to Strong Mixing Conditions. Vol. 1,2,3. Kendrick Press, Heber City, UT (2007)

    Google Scholar 

  14. Bulinskaya, E.V.: On the mean number of crossings of a level by a stationary Gaussian process. Theor. Probab. Appl. 6, 435–438 (1961)

    Article  Google Scholar 

  15. Bulinski, A., Spodarev, E., Timmermann, F.: Central limit theorems for the excursion sets volumes of weakly dependent random fields. Bernoulli 18, 100–118 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bulinski, A.V., Shashkin, A.P.: Limit theorems for associated random fields and related systems. World Scientific, Singapore (2007)

    Google Scholar 

  17. Cramér, H., Leadbetter, M.: The moments of the number of crossings of a level by a stationary normal process. Ann. Math. Statist. 36(6), 1656–1663 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cuzick, J.: A central limit theorem for the number of zeros of a stationary Gaussian process. Ann. Probab. 4(4), 547–556 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  19. Demichev, V., Schmidt, J.: A central limit theorem for the volume of high excursions of stationary associated random fields. Preprint (2013). Ulm University

    Google Scholar 

  20. Doukhan, P.: Mixing: properties and examples. Lecture Notes in Statistics, vol. 85, Springer, Berlin (1994)

    Google Scholar 

  21. Elizarov, A.: Central limit theorem for the sojourn time and local time of a stationary process. Theory Probab. Appl. 33(1), 161–164 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Federer, H.: Curvature measures. Trans. Amer. Math. Soc. 93, 418–491 (1959)

    MATH  MathSciNet  Google Scholar 

  23. de Haan, L.: A spectral representation for max–stable processes. Ann. Probab. 12(4), 1194–1204 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ibragimov, I., Zaporozhets, D.: On the area of a random surface. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 312, 154–175 (2010) arXiv:1102.3509

    Google Scholar 

  25. Iribarren, I.: Asymptotic behaviour of the integral of a function on the level set of a mixing random field. Probab. Math. Stat. 10(1), 45–56 (1989)

    MATH  MathSciNet  Google Scholar 

  26. Ivanov, A.V., Leonenko, N.N.: Statistical Analysis of Random Fields. Kluwer, Dordrecht (1989)

    Book  MATH  Google Scholar 

  27. Ivanov, A.V., Leonenko, N.N., Ruiz-Medina, M.D., Savich, I.N.: Limit theorems for weighted nonlinear transformations of Gaussian stationary processes with singular spectra. Ann. Probab. 41(2) (2013)

    Google Scholar 

  28. Kac, M.: On the average number of real roots of a random algebraic equation. Bull. Amer. Math. Soc. 49 314-320 (1943)

    Article  MATH  MathSciNet  Google Scholar 

  29. Karcher, W.: On infinitely divisible random fields with an application in insurance. Ph.D. thesis, Ulm University, Ulm (2012)

    Google Scholar 

  30. Kratz, M.: Level crossings and other level functionals of stationary Gaussian processes. Probab. Surv. 3, 230–288 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kratz, M., Léon, J.: Central limit theorems for level functionals of stationary Gaussian processes and fields. J. Theor. Probab. 14, 639–672 (2001)

    Article  MATH  Google Scholar 

  32. Kratz, M., Léon, J.: Level curves crossings and applications for Gaussian models. Extremes 13(3), 315–351 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Leadbetter, M.R., Lindgren, G., Rootzen, H.: Extremes and related properties of random sequences and processes, 1st edn. Springer Series in Statistics. Springer, New York (1983)

    Book  MATH  Google Scholar 

  34. Leonenko, N., Olenko, A.: Sojourn measures of Student and Fischer–Snedecor random fields. Bernoulli (2013) (in press)

    Google Scholar 

  35. Leonenko, N.N.: Limit distributions of characteristics of exceeding a level by a Gaussian field. Math. notes of the Acad. Sci. of the USSR 41(4), 339–345 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  36. Leonenko, N.N.: Sharpness of the normal approximation of functionals of strongly correlated Gaussian random fields. Math. notes Acad. Sci. USSR 43(2), 161–171 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  37. Leonenko, N.N.: Limit theorems for random fields with singular spectrum. Kluwer, Dordrecht (1999)

    Book  MATH  Google Scholar 

  38. Liu, J.: Tail approximations of integrals of Gaussian random fields. Ann. Probab. 40(3), 1069–1104 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Liu, J., Xu, G.: Some asymptotic results of Gaussian random fields with varying mean functions and the associated processes. Ann. Statist. 40(1), 262–293 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. Malevich, T.L.: Asymptotic normality of the number crossings of level zero by a Gaussian process. Theor. Probab. Appl. 14, 287–295 (1969)

    Article  MATH  Google Scholar 

  41. Marinucci, D., Peccati, G.: Random Fields on the Sphere. Representation, Limit Theorems and Cosmological Applications, Lecture Notes of the London Mathematical Society, vol. 389. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  42. Mecke, K., Stoyan, D. (eds.): Morphology of condensed matter. Physics and Geometry of Spatially Complex Systems, Lecture Notes in Physics, vol. 600. Springer, Berlin (2002)

    Google Scholar 

  43. Meschenmoser, D., Shashkin, A.: Functional central limit theorem for the volume of excursion sets generated by associated random fields. Statist. Probab. Lett. 81(6), 642–646 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Meschenmoser, D., Shashkin, A.: Functional central limit theorem for the measures of level surfaces of the Gaussian random field. Theor. Probab. Appl. 57(1), 162–172 (2013)

    Article  MATH  Google Scholar 

  45. Molchanov, I.: Theory of Random Sets. Springer, London (2005)

    MATH  Google Scholar 

  46. Móricz, F.: A general moment inequality for the maximum of the rectangular partial sums of multiple series. Acta Math. Hung. 41, 337–346 (1983)

    Article  MATH  Google Scholar 

  47. Pantle, U., Schmidt, V., Spodarev, E.: On the estimation of integrated covariance functions of stationary random fields. Scand. J. Statist. 37, 47–66 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  48. Piterbarg, V.I.: The central limit theorem for the number of level crossings of a stationary Gaussian process. Theor. Probab. Appl. 23(1), 178–182 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  49. Resnik, S.I.: Extreme values, regular variation and point processes. Springer, Berlin (2008)

    Google Scholar 

  50. Rice, S.: Mathematical analysis of random noise. Bell Syst. Tech. J. 23, 282–332 (1944)

    Article  MATH  MathSciNet  Google Scholar 

  51. Rice, S.: Mathematical analysis of random noise. Bell Syst. Tech. J. 24, 46–156 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  52. Samorodnitsky, G., Taqqu, M.: Stable non-Gaussian random processes. Chapman & Hall/CRC, London (1994)

    MATH  Google Scholar 

  53. Santaló, L.: Integral Geometry and Geometric Probability. Addison-Welsey, Reading, Mass (1976)

    MATH  Google Scholar 

  54. Schneider, R.: Convex Bodies. The Brunn–Minkowski Theory. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  55. Schwartzman, A., Dougherty, R.F., Taylor, J.E.: False discovery rate analysis of brain diffusion direction maps. Ann. Appl. Stat. 2(1), 153–175 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  56. Shashkin, A.: A functional central limit theorem for the level measure of a Gaussian random field. Statist. Probab. Lett. 83(2), 637–643 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  57. Slud, E.: MWI representation of the number of curve–crossings by a differentiable Gaussian process, with applications. Ann. Probab. 22(3), 1355–1380 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  58. Spodarev, E. (ed.): Stochastic Geometry, Spatial Statistics and Random Fields. Asymptotics Methods, Lecture Notes in Mathematics, vol. 2068. Springer, Berlin (2013)

    Google Scholar 

  59. Spodarev, E., Zaporozhets, D.: Asymptotics of the mean Minkowski functionals of Gaussian excursions (2012). Preprint

    Google Scholar 

  60. Taylor, J.E., Worsley, K.J.: Detecting sparse signal in random fields, with an application to brain mapping. J. Am. Stat. Assoc. 102(479), 913–928 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  61. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)

    Book  Google Scholar 

  62. Worsley, K.J., Taylor, J.: Detecting fMRI activation allowing for unknown latency of the hemodynamic response. Neuroimage 29, 649–654 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Spodarev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Spodarev, E. (2014). Limit Theorems for Excursion Sets of Stationary Random Fields. In: Korolyuk, V., Limnios, N., Mishura, Y., Sakhno, L., Shevchenko, G. (eds) Modern Stochastics and Applications. Springer Optimization and Its Applications, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-03512-3_13

Download citation

Publish with us

Policies and ethics