Skip to main content

Dextran and Food Application

  • Living reference work entry
  • First Online:
Polysaccharides

Abstract

An increasing consumer trend towards healthy and additive-free food has made dextran from food grade lactic acid bacteria (LAB) an attractive solution. Dextrans are homopolysaccharides of d-glucose produced by extracellular dextransucrase released from LAB of the genera, viz., Leuconostoc, Lactobacillus, Streptococcus, Weissella, and Pediococcus. Dextrans have been known for their viscosifying, emulsifying, texturizing, stabilizing attributes in food applications. Dextran has the potential to be recruited as a novel ingredient replacing the commercial hydrocolloids in bakery and other food industries. Prebiotic oligosaccharide production by hydrolysis of dextran is a rather new field, garnering research and industrial attention. The applications, available sources, preparation, and characterization of dextran and problems associated with its use have been discussed. This chapter also highlights the key developments in recent times and discusses the importance of bio-prospecting novel dextran-producing isolates from biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agrawal M, Shukla R, Goyal A (2011) UV mutagenesis of Leuconostoc mesenteroides NRRL B-640 for generation of a mutant (B-640 M) with hyper-producing dextransucrase activity. Curr Trends Biotechnol Pharm 5:1445–1453

    CAS  Google Scholar 

  • Ahmed RZ, Siddiqui K, Arman M, Ahmed N (2012) Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohydr Polym 90:441–446

    Article  CAS  Google Scholar 

  • Aman A, Siddiqui NNN, Qader SAQ (2012) Characterization and potential applications of high molecular weight dextran produced by Leuconostoc mesenteroides AA1. Carbohydr Polym 87:910–915

    Article  CAS  Google Scholar 

  • Andre I, Potockiveronese G, Morel S, Monsan P, Remaud-Simeon M (2010) Sucrose-utilizing transglucosidases for biocatalysis. Top Curr Chem 294:25–48

    Article  CAS  Google Scholar 

  • Arendt EK, Moroni A, Zannini E (2011) Medical nutrition therapy: use of sourdough lactic acid bacteria as a cell factory for delivering functional biomolecules and food ingredients in gluten free bread. Microb Cell Fact Suppl 1:S15

    Article  Google Scholar 

  • Awad S, Hassan AN, Halaweish F (2005) Application of exopolysaccharide producing cultures in reduced-fat Cheddar cheese: composition and proteolysis. J Dairy Sci 88:4195–4203

    Article  CAS  Google Scholar 

  • Bejar W, Gabriel V, Amari M, Morel S, Mezghani M, Maguin E, Fontagne-Faucherb C, Bejar S, Chouayekh H (2013) Characterization of glucansucrase and dextran from Weissella sp. TN610 with potential as safe food additives. Int J Biol Macromol 52:125–132

    Article  CAS  Google Scholar 

  • Bhavani AL, Nisha J (2010) Dextran: the polysaccharide with versatile uses. Int J Pharma Biosci 1:569–573

    Google Scholar 

  • Bounaix MS, Gabriel V, Robert H, Morel S, Remaud-Simeon M, Gabriel B, Fontagne-Faucher C (2010) Characterization of glucan-producing Leuconostoc strains isolated from sourdough. Int J Food Microbiol 144:1–9

    Article  CAS  Google Scholar 

  • Brandt MJ, Roth K, Hammes WP (2003) Effect of an exopolysaccharide produced by Lactobacillus sanfranciscensis LTH1729 on dough and bread quality. In: de Vyust L (ed) Sourdough from fundamentals to application. Vrije Universiteit, Brussels, p 80

    Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  Google Scholar 

  • Cave RA, Seabrook SA, Gidley MJ, Gilbert RG (2009) Characterization of starch by size-exclusion chromatography: the limitations imposed by shear scission. Biomacromolecules 10:2245–2253

    Article  CAS  Google Scholar 

  • Cerning J (1995) Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait 75:463–472

    Article  CAS  Google Scholar 

  • Chen H, Jin Y, Ding X, Wu F, Bashari M, Chen F, Cui Z, Xu X (2014) Improved the emulsion stability of phosvitin from hen egg yolk against different pH by the covalent attachment with dextran. Food Hydrocoll 39:104–112

    Article  Google Scholar 

  • Cote GL, Robyt JF (1982) Isolation and partial characterization of an extracellular glucansucrase from Leuconostoc mesenteroides NRRL B-1355 that synthesizes alternating 1-6, 1-3-α-d-glucan. Carbohydr Res 101:57–74

    Article  CAS  Google Scholar 

  • Cote GL, Skory CD, Unser SM, Rich JO (2012) The production of glucans via glucansucrases from Lactobacillus satsumensis isolated from a fermented beverage starter culture. Appl Microbiol Biotechnol 97:7265–7263

    Article  Google Scholar 

  • Das D, Goyal A (2014) Characterization and biocompatibility of glucan: a safe food additive from probiotic Lactobacillus plantarum DM5. J Sci Food Agric 94:683–690

    Article  CAS  Google Scholar 

  • Das D, Baruah R, Goyal A (2014) A food additive with prebiotic properties of an α-d-glucan from Lactobacillus plantarum DM5. Int J Biol Macromol 69:20–26

    Article  CAS  Google Scholar 

  • Falconer DJ, Mukerjea R, Robyt JF (2011) Biosynthesis of dextrans with different molecular weights by selecting the concentration of Leuconostoc mesenteroides B-512FMC dextransucrase, the sucrose concentration, and the temperature. Carbohydr Res 346:280–284

    Article  CAS  Google Scholar 

  • Funane K, Ishii T, Ono H, Kobayashi M (2005) Changes in linkage pattern of glucan products induced by substitution of Lys residues in the dextransucrase. FEBS Lett 579:4739–4745

    Article  CAS  Google Scholar 

  • Galle S, Schwab C, Arendt EK, Ganzle M (2010) Exopolysaccharide forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58:5834–5841

    Article  CAS  Google Scholar 

  • Galle S, Schwab C, Dal Bello F, Coffey A, Ganzle MG, Arendt EK (2012) Influence of in situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. Int J Food Microbiol 155:105–112

    Article  CAS  Google Scholar 

  • Goggins M, Kelleher D (1994) Celiac disease and other nutrient related injuries to the gastrointestinal tract. Am J Gastroenterol 89:2–17

    Google Scholar 

  • Hager AS, Arendt EK (2013) Influence of hydroxypropyl methylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free bread. Food Hydrocoll 32:195–203

    Article  CAS  Google Scholar 

  • Hehre EJ (1941) Production from sucrose of a serologically reactive polysaccharide by a sterile bacterial extract. Science 93:237–238

    Article  CAS  Google Scholar 

  • Ito K, Ito S, Shimamura T, Weyand S, Kawarasaki Y, Misaka T, Abe K, Kobayashi T, Cameron AD, Iwata S (2011) Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J Mol Biol 408:177–186

    Article  CAS  Google Scholar 

  • Jeanes A, Haynes WC, Wilham CA, Rankin JC, Melvin EH, Austin MJ, Cluskey JE, Fisher BE, Tsuchiya HM, Rist CE (1954) Characterization and classification of dextrans from ninety-six strains of bacteria. J Am Chem Soc 76:5041–5052

    Article  CAS  Google Scholar 

  • Katina K, Maina NH, Juvonen R, Flander L, Johansson L, Virkki L, Tenkanen M, Laitila A (2009) In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiol 26:734–743

    Article  CAS  Google Scholar 

  • Kim D, Robyt JF (1994) Production and selection of mutants of Leuconostoc mesenteroides constitutive for glucansucrases. Enzym Microb Technol 16:659–664

    Article  CAS  Google Scholar 

  • Kitaoka M, Robyt JF (1998) Use of a microtiter plate screening method for obtaining Leuconostoc mesenteroides mutants constitutive for glucansucrase. Enzym Microb Technol 22:527–531

    Article  CAS  Google Scholar 

  • Kothari D, Goyal A (2013) Structural characterization of enzymatically synthesized dextran and oligosaccharides from Leuconostoc mesenteroides NRRL B-1426 dextransucrase. Biochem (Mosc) 78:1483–1490

    Article  Google Scholar 

  • Lacaze G, Wick M, Cappelle S (2007) Emerging fermentation technologies: Development of novel sourdoughs. Food Microbiol 24:155–160

    Article  CAS  Google Scholar 

  • Lazic ML, Velzkovic VB, Vucetic JI, Vrvic MM (1993) Effect of pH and aeration on dextran production by Leuconostoc mesenteroides. Enzym Microb Technol 15:334–338

    Article  CAS  Google Scholar 

  • Leemhuis H, Pijning T, Dobruchowska JM, van Leeuwen SS, Kralj S, Dijkstra BW, Dijkhuizen L (2013) Three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J Biotechnol 163:250–272

    Article  CAS  Google Scholar 

  • Liu Y, Zhao G, Zhao M, Ren J, Yang B (2012) Improvement of functional properties of peanut protein isolate by conjugation with dextran through Maillard reaction. Food Chem 131:901–906

    Article  CAS  Google Scholar 

  • Maina NH, Tenkanen M, Maaheimo H, Juvonen R, Virkki L (2008) NMR spectroscopic analysis of exopolysaccharides produced by Leuconostoc citreum and Weissella confusa. Carbohydr Res 343:1446–1455

    Article  CAS  Google Scholar 

  • Maina NH, Virrki L, Pyonnonen H, Maaheimo H, Tenkanen M (2011) Structural analysis of enzyme-resistant isomalto-oligosaccharides reveals the elongation of α-(1 → 3) linked branches in Weissella confusa dextran. Biomacromolecules 12:409–418

    Article  CAS  Google Scholar 

  • Martins SIFS, Jongen WMF, van Boekel MAJS (2001) A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci Technol 11:364–373

    Article  Google Scholar 

  • Mende S, Peter M, Bartels K, Dong T, Rohm H, Jaros D (2013) Concentration dependent effects of dextran on the physical properties of acid milk gels. Carbohydr Polym 98:1389–1396

    Article  CAS  Google Scholar 

  • Monchois V, Willemot RM, Monsan P (1999) Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol Lett 23:131–151

    CAS  Google Scholar 

  • Mopper K, Schultz CA, Chevolot L, Germain C, Revuelta R, Dawson R (1992) Determination of sugars in unconcentrated seawater and other natural waters by liquid chromatography and amperometric detection. Environ Sci Technol 26:133–138

    Article  CAS  Google Scholar 

  • Mustalahti K, Catassi C, Reunanen A, Fabiani E, Heier M, MacMillan S, Murray L, Metzger MH, Gasparin M, Bravi E, Maki M, Coeliac EU Cluster, Project Epidemiology (2010) The prevalence of celiac disease in Europe: results of a centralized, international mass screening project. Ann Med 42:587–595

    Article  Google Scholar 

  • Naessens M, Cerdobbel A, Soetaert W, Vandamme EJ (2005) Leuconostoc dextransucrase and dextran: production, properties and applications. J Chem Technol Biotechnol 80:845–860

    Article  CAS  Google Scholar 

  • Neely WB, Nott J (1962) Dextransucrase an induced enzyme from Leuconostoc mesenteroides. Biochemistry 1:1136–1140

    Article  CAS  Google Scholar 

  • Olano-Martin E, Mountzouris KC, Gibson GR, Rastall RA (2000) In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria. Br J Nutr 83:247–255

    CAS  Google Scholar 

  • Oliver CM, Melton LD, Stanley RA (2006) Creating protein with novel functionality via the Maillard reaction: a review. Crit Rev Food Sci Nutr 46:337–350

    Article  CAS  Google Scholar 

  • Parlak M, Ustek D, Tanrisevena A (2013) A novel method for covalent immobilization of dextransucrase. J Mol Catal B Enzym 89:52–60

    Article  CAS  Google Scholar 

  • Pasteur L (1861) On the viscous fermentation and the butyrous fermentation. Bull Soc Chim Fr 11:30–31

    Google Scholar 

  • Patel S, Goyal A (2010) Isolation, characterization and mutagenesis of exopolysaccharide synthesizing new strains of lactic acid bacteria. Internet J Microbiol 8(1)

    Google Scholar 

  • Patel S, Kasoju N, Bora U, Goyal A (2010) Structural analysis and biomedical applications of dextran produced by a new isolate Pediococcus pentosaceus screened from biodiversity hot spot Assam. Bioresour Technol 101:6852–6855

    Article  CAS  Google Scholar 

  • Purama RK, Goyal A (2005) Dextransucrase production by Leuconostoc mesenteroides. Indian J Microbiol 2:89–101

    Google Scholar 

  • Rao TJM, Goyal A (2013) A novel high dextran yielding Weissella cibaria JAG8 for cereal food application. Int J Food Sci Nutr 64:346–354

    Article  CAS  Google Scholar 

  • Rao TJM, Kothari D, Goyal A (2014) Superior prebiotic and physicochemical properties of novel dextran from Weissella cibaria JAG8 for potential food applications. Food Funct. doi:10.1039/C4FO00319E

    Google Scholar 

  • Remaud-Simeon M, Willemot RM, Sarcabal P, de Montalk GP, Monsan P (2000) Glucansucrases: molecular engineering and oligosaccharide synthesis. J Mol Catal B Enzym 10:117–128

    Article  CAS  Google Scholar 

  • Robyt JF, Yoon SH, Mukerjea R (2008) Dextransucrase and the mechanism for dextran biosynthesis. Carbohydr Res 343:3039–3048

    Article  CAS  Google Scholar 

  • Rolland-Sabate A, Guilois S, Jaillais B, Colonna P (2011) Molecular size and mass distributions of native starches using complementary separation methods: asymmetrical flow field flow fractionation and hydrodynamic and size-exclusion chromatography. Anal Bioanal Chem 399:1493–1505

    Article  CAS  Google Scholar 

  • Rolland-Sabate A, Guilois S, Grimaud F, Lancelon-Pin C, Roussel X, Laguerre S, Vikso-Nielsen A, Putaux JL, D’Hulst C, Potocki-Veronese G, Buleon A (2014) Characterization of hyperbranched glycopolymers produced in vitro using enzymes. Anal Bioanal Chem 406:1607–1618

    Article  CAS  Google Scholar 

  • Saad N, Delattre C, Urdaci M, Schmitter JM, Bressollier P (2013) An overview of the last advances in probiotic and prebiotic field. LWT - Food Sci Technol 50:1–16

    Article  CAS  Google Scholar 

  • Sarbini SR, Kolida S, Naeye S, Einerhand AW, Gibson GR, Rastall RA (2013) The prebiotic effect of α-1,2 branched, low molecular weight dextran in the batch and continuous faecal fermentation system. J Funct Foods 5:1938–1946

    Article  CAS  Google Scholar 

  • Sarwat F, Qader SAQ, Aman A, Ahmed N (2008) Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. Int J Biol Sci 4:379–386

    Article  CAS  Google Scholar 

  • Scheibler C (1874) Investigation on the nature of the gelatinous excretion (so-called frog’s spawn) which is observed in production of beet-sugar juices. Z Dtsch Zucker-Ind 24:309–335

    Google Scholar 

  • Schwab C, Mastrangelo M, Corsetti A, Ganzle M (2008) Formation of oligosaccharides and polysaccharides by Lactobacillus reuteri LTH5448 and Weissella cibaria 10 M in sorghum sourdoughs. Cereal Chem 85:679–684

    Article  CAS  Google Scholar 

  • Shukla R, Goyal A (2013) Novel dextran from Pediococcus pentosaceus CRAG3 isolated from fermented cucumber with anti-cancer properties. Int J Biol Macromol 62:352–357

    Article  CAS  Google Scholar 

  • Shukla S, Shi Q, Maina NH, Juvonen M, Tenkanen M, Goyal A (2014) Weissella confusa Cab3 dextransucrase: properties and in vitro synthesis of dextran and glucooligosaccharides. Carbohydr Polym 101:554–564

    Article  CAS  Google Scholar 

  • Siddiqui NN, Aman A, Qader SAQ (2013) Mutational analysis and characterization of dextran synthesizing enzyme from wild and mutant strain of Leuconostoc mesenteroides. Carbohydr Polym 91:209–216

    Article  CAS  Google Scholar 

  • Siddiqui NN, Aman A, Silipo A, Qader SAQ, Molinaro A (2014) Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides. Carbohydr Polym 99:331–338

    Article  CAS  Google Scholar 

  • Smith MR, Zahnley J, Goodman N (1994) Glucosyltransferase mutants of Leuconostoc mesenteroides NRRL B-1355. Appl Environ Microbiol 60:2723–2731

    CAS  Google Scholar 

  • Spotti MJ, Martinez MJ, Pilosof AMR, Candioti M, Rubiolo AM, Carrara CR (2014) Influence of Maillard conjugation on structural characteristics and rheological properties of whey protein/dextran systems. Food Hydrocoll 39:223–230

    Article  CAS  Google Scholar 

  • Tamime AY, Robinson RK (1999) Yoghurt: science and technology. CRC Press, Boca Raton

    Google Scholar 

  • Tieking M, Ganzle MG (2005) Exopolysaccharides from cereal-associated lactobacilli. Trends Food Sci Technol 16:79–84

    Article  CAS  Google Scholar 

  • Tsuchiya HM, Koepsell HJ, Corman J, Bryant G, Bogard MO, Feger VH, Jackson RW (1952) The effect of certain culture factors on production on dextransucrase by Leuconostoc mesenteroides. J Bacteriol 64:521–526

    CAS  Google Scholar 

  • van Leeuwen SS, Kralj S, van Geel-Schutten IH, Gerwig GJ, Dijkhuizen L, Kamerling JP (2008) Structural analysis of the α-d-glucan (EPS35-5) produced by the Lactobacillus reuteri strain 35–5 glucansucrase GTFA enzyme. Carbohydr Res 343:1251–1265

    Article  Google Scholar 

  • Varshosaz J (2012) Dextran conjugates in drug delivery. Exp Opin Drug Deliv 9:509–523

    Article  CAS  Google Scholar 

  • Vettori MHPB, Franchetti SMM, Contiero J (2012) Structural characterization of a new dextran with low degree of branching produced by Leuconostoc mesenteroides FT045B dextransucrase. Carbohydr Polym 88:1440–1444

    Article  CAS  Google Scholar 

  • Vilaplana F, Gilbert RG (2010) Characterization of branched polysaccharides using multiple detection size separation techniques. J Sep Sci 33:3537–3554

    Article  CAS  Google Scholar 

  • Vujicic-Zagar A, Pijning T, Kralj S, Lopez CA, Eeuwema W, Dijkhuizen L, Dijk-stra BW (2010) Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes. Proc Natl Acad Sci U S A 107:21406–21411

    Article  CAS  Google Scholar 

  • Wolter A, Hager AS, Zannini E, Czerny M, Arendt EK (2014) Influence of dextran producing Weissella cibaria on baking properties and sensory profile of gluten-free and wheat breads. Int J Food Microbiol 172:83–91

    Article  CAS  Google Scholar 

  • Zahnley JC, Smith MR (1995) Insoluble glucan formation by Leuconostoc mesenteroides NRRL B-1355. Appl Environ Microbiol 61:1120–1123

    CAS  Google Scholar 

  • Zhang J, Wu N, Yang X, He X, Wang L (2012) Improvement of emulsifying properties of Maillard reaction products from β-conglycinin and dextran using controlled enzymatic hydrolysis. Food Hydrocoll 28:301–312

    Article  Google Scholar 

  • Zhu D, Damodaran S, Lucey JA (2010) Physicochemical and emulsifying properties of whey protein isolate (WPI)-dextran conjugates produced in aqueous solution. J Agric Food Chem 58:2988–2994

    Article  CAS  Google Scholar 

  • Zhuo XY, Qi JR, Yin SW, Yang XQ, Zhu JH, Huang LX (2013) Formation of soy protein isolate-dextran conjugates by moderate Maillard reaction in macromolecular crowding conditions. J Sci Food Agric 93:316–323

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Goyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Kothari, D., Das, D., Patel, S., Goyal, A. (2014). Dextran and Food Application. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-03751-6_66-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03751-6_66-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-03751-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics