Skip to main content

Chitosan -Based Edible Films

  • Living reference work entry
  • First Online:
Polysaccharides

Abstract

What is an edible packaging? An edible film or coating is simply defined as a thin film of edible material formed and sprayed on foods or food components. This package can be eaten as a part of the whole food product; it is also biodegradable, so if dumped it will disintegrate in reasonable short time.

Edible films and coatings offer extra advantages such as edibility, biocompatibility, esthetic appearance, barrier to gas properties, nontoxicity, nonpolluting, and having low cost (No et al. J Food Sci 72(5):87–100, 2007). In addition, biofilms and coatings by themselves are acting as carriers of food additives (i.e., antioxidants, antimicrobials) and have been particularly considered in food preservation due to their ability to extend the shelf life.

This chapter will focus mainly on edible films based on chitosan – a wonderful amazing material which is derived from the naturally occurring polymer chitin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdollahi M, Rezaei M, Farzi G (2012) A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J Food Eng 111:343–350

    CAS  Google Scholar 

  • Abdou ES, Nagy KSA, Elsabee MZ (2008) Extraction and characterization of chitin and chitosan from local sources. Bioresour Technol 99:1359–1367

    CAS  Google Scholar 

  • Ahn DH, Choi JS, Lee HY, Youn SK, Kim JY, Park SM (2003) Effects on preservation and quality of bread with coating high molecular weight chitosan. Korean J Food Nutr 16(4):430–436

    Google Scholar 

  • Almenar E, Hernández-Munoz P, Gavara R (2009) Evolution of selected volatiles in chitosan-coated strawberries (Fragaria x ananassa) during refrigerated storage. J Agr Food Chem 57:974–980

    CAS  Google Scholar 

  • Alvarez MF (2000) Review: active food packaging. Food Sci Technol Intern 6:97–108

    CAS  Google Scholar 

  • Amanatidou A, Slump RA, Gorris LGM, Smid EJ (2000) High oxygen and high carbon dioxide modified atmospheres for shelf-life extension of minimally processed carrots. J Food Sci 65:61–66

    CAS  Google Scholar 

  • Anker M, Berntsen J, Hermansson AM, Stading M (2002) Improved water vapor barrier of whey protein films by addition of an acetylated monoglyceride. Innov Food Sci Emerg Tec 3:81–92

    CAS  Google Scholar 

  • Anonymous (2003) Control of Listeria monocytogenes in ready-to-eat meat and poultry products. Code of federal regulation, 9 CFR 430. Office of the Federal Register, US Government Printing Office, Washington, DC

    Google Scholar 

  • Ansorena MR, Marcovich NE, Roura SI (2011) Impact of edible coatings and mild heat shocks on quality of minimally processed broccoli (Brassica oleracea L.) during refrigerated storage. Postharvest Biol Technol 59(1):53–63

    CAS  Google Scholar 

  • Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3:113–126

    CAS  Google Scholar 

  • Arashisara S, Hisara O, Kayab M, Yanik T (2004) Effects of modified atmosphere and vacuum packaging on microbiological and chemical properties of rainbow trout (Oncorynchus mykiss) fillets. Int J Food Microbiol 97:209–214

    Google Scholar 

  • Arvanitoyannisa IS, Nakayama A, Aiba S (1998) Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties. Carbohydr Polym 37:371–382

    Google Scholar 

  • Austin PE, Castle JE, Albisetti CJ (1989) In: Skjak-Braek G, Anthonsen T, Sandford P (eds) Chitin and chitosan. Elsevier, Essex, p 749

    Google Scholar 

  • Avena-Bustillos RJ, Olsen CW, Chiou B, Yee E, Bechtel PJ, McHugh TH (2006) Water vapour permeability of mammalian and fish gelatin films. J Food Sci 71:202–207

    Google Scholar 

  • Bagamboula CF, Uyttendaele M, Debevere J (2004) Inhibitory effect of thyme and basil essential oils, carvacrol, thymol, estragol, linalool and p-cymene towards Shigella sonnei and S. flexneri. Food Microbiol 21:33–42

    CAS  Google Scholar 

  • Bagg J, Jackson MS, Sweeney MP, Ramage G, Davies AN (2006) Susceptibility to Melaleuca alternifolia (tea tree) oil of yeasts isolated from the mouths of patients with advanced cancer. Oral Oncology 42(5):487–492, ISSN 1368–8375

    Google Scholar 

  • Bautista-Banos S, Hernandez-Lauzardo AN, Velazquez-del Valle MG, Hernandez-Lopez M, Ait Barka E, Bosquez-Molina E, Wilson CL (2006) Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection 25(2):108–118. Review article

    CAS  Google Scholar 

  • Bhale S, No HK, Prinyawiwatkul W, Farr AJ, Nadarajah K, Meyers SP (2003) Chitosan coating improves shelf life of eggs. J Food Sci 68(7):2378–2383

    CAS  Google Scholar 

  • Bie P, Liu P, Yu L, Li X, Chen L, Xie F (2013) The properties of antimicrobial films derived from poly(lactic acid)/starch/chitosan blended matrix. Carbohydr Polym 98(1):959–966

    CAS  Google Scholar 

  • Bonilla J, Vargas M, Atarés L, Chiralt A (2011) Physical properties of chitosan-basil essential oil edible films as affected by oil content and homogenization conditions. Procedia Food Sci 1:50–56

    CAS  Google Scholar 

  • Bonilla J, Atarés L, Vargas M, Chiralt A (2013a) Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. J Food Eng 114(3):303–312

    CAS  Google Scholar 

  • Bonilla J, Talón E, Atarés L, Vargas M, Chiralt A (2013b) Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat chitosan–starch films. J Food Eng 118(3):271–278

    CAS  Google Scholar 

  • Bourtoom T, Chinnan MS (2008) Preparation and properties of rice chitosan–starch blend biodegradable film. LWT – Food Sci Technol 41(9):1633–1641

    CAS  Google Scholar 

  • Cai J, Yang J, Du Y, Fan L, Qui Y, Li J, Kennedy JF (2006) Enzymatic preparation of chitosan from the waste Aspergillus niger mycelium of citric acid production plant. Carbohydr Polym 64:151–157

    CAS  Google Scholar 

  • Campaniello D, Bevilacqua A, Ainigaglia M, Corboet MR (2008) Chitosan: antimicrobial activity and potential applications for preserving minimally processed strawberries. Food Microbiol 25:992–1000

    CAS  Google Scholar 

  • Caner C (2005) The effect of edible eggshell coatings on egg quality and consumer perception. J Sci Food Agric 85:1897–1902

    CAS  Google Scholar 

  • Casariego A, Souza BWS, Cerqueira MA, Teixeira JA, Cruz L, Díaz RV, Vicente AA (2009) Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids 23(7):1895–1902

    CAS  Google Scholar 

  • Catarina O, Ferreira CA, Delgadillo NI, Lopes-da-Silva JA (2009) Characterization of chitosan–whey protein films at Cheese Whey Using Chitosan at acid pH. Food Res Int 42(7):807–813

    Google Scholar 

  • Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44:223–237

    CAS  Google Scholar 

  • Chandumpaia A, Singhpibulpornb N, Faroongsarngc D, Sornprasit P (2004) Preparation and physico-chemical characterization of chitin and chitosan from the pens of the squid species, Loligo lessoniana and Loligo formosana. Carbohydr Polym 58:467–474

    Google Scholar 

  • Chatterjee S, Adhya M, Guha AK, Chatterjee BP (2005) Chitosan from Mucor rouxii: production and physico-chemical characterization. Process Biochem 40:395–400

    CAS  Google Scholar 

  • Chien P, Sheu F, Yang F (2007) Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. J Food Eng 78:225–229

    CAS  Google Scholar 

  • Chien P-J, Lin H-R, Su M-S (2013) Effects of edible micronized chitosan coating on quality and shelf life of sliced papaya. Food Nutr Sci 4:9–13

    Google Scholar 

  • Cissé M, Kouakou AC, Montet D, Loiseau G, Ducamp-Collin MN (2013) Antimicrobial and physical properties of edible chitosan films enhanced by lactoperoxidase system. Food Hydrocoll 30(2):576–580

    Google Scholar 

  • Coma V (2008) Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci 78:90–103

    CAS  Google Scholar 

  • Coma V, Martial-Gros A, Garreau S, Copinet A, Salin F, Deschamps A (2002) Edible antimicrobial films based on Chitosan matrix. J Food Sci 67:1162–1169

    CAS  Google Scholar 

  • Coma V, Deschamps A, Martial-Gros A (2003) Bioactive packaging materials from edible chitosan polymer-antimicrobial activity assessment on dairy-related contaminants. J Food Sci 68:2788–2792

    CAS  Google Scholar 

  • Correlo VM, Boesel LF, Bhattacharya M, Mano JFM, Neves NL, Reis R (2005) Properties of melt processed chitosan and aliphatic polyester blends. Mater Sci Eng A 403(1–2):57–68

    Google Scholar 

  • Cutter CN (2002) Microbial control by packaging: a review. Crit Rev Food Sci Nutr 42:51–161

    Google Scholar 

  • Cutter CN (2006) Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods. Meat Sci 74:131–142

    Google Scholar 

  • Darder M, Colilla M, Ruiz-Hitzky E (2003) Biopolymer- clay nanocomposites based on Chitosan intercalated in montmorillonite. Chem Mater 15(20):3774–3780

    CAS  Google Scholar 

  • Dawson PL, Carl GD, Acton JC, Han IY (2002) Effect of lauric acid and nisin-impregnated soy-based films on the growth of Listeria monocitogenes on turkey bologna. Poult Sci 81:721–726

    CAS  Google Scholar 

  • Devlieghere F, Vermeulen A, Debevere J (2004) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol 21(6):703–714

    CAS  Google Scholar 

  • Di Pierro P, Sorrentino A, Mariniello L, Giosafatto CVL, Porta R (2010) Chitosan/whey protein film as active coating to extend Ricotta cheese shelf-life. LWT- Food Sci Technol 44:1–4

    Google Scholar 

  • Domard A, Domard M (2001) Chitosan: structure–properties relationship and biomedical applications. In: Severian D (ed) Polymeric biomaterials. Marcel Decker, New York, pp 187–212

    Google Scholar 

  • dos Santos NST, Athayde Aguiar AJA, Oliveira CEV, Veríssimo de Sales C, de Melo e Silva S, Sousa da Silva R, Stamford TCM, de Souza EL (2012) Efficacy of the application of a coating composed of chitosan and Origanum vulgare L. essential oil to control Rhizopus stolonifer and Aspergillus niger in grapes (Vitis labrusca L.). Food Microbiol 32(2):345–353

    Google Scholar 

  • Duan J, Zhao Y, Strik BC, Wu R (2011) Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biol Technol 59(1):71–79

    CAS  Google Scholar 

  • Durango AM, Soares NFF, Andrade NJ (2006) Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots. Food Control 17(5):336–341

    CAS  Google Scholar 

  • Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng C 33:1819–1841

    CAS  Google Scholar 

  • Elsabee MZ, Abdou ES, Nagy K, Eweis M (2008) Carbohydr Polym 71:187–195

    CAS  Google Scholar 

  • Fan W, Sun J, Chen Y, Qiu J, Zhang Y, Chi Y (2009) Effects of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chem 115(1):66–70

    CAS  Google Scholar 

  • Fernandez Cervera M, Karjalainen M, Airaksinen S, Rantanen J, Krogars K, Heinamäki J, Iraizoz Colarte A, Yliruusi J (2004). Physical stability and moisture sorption of aqueous chitosan–amylase starch films plasticized with polyols. Eur J Pharma Biopharm 58:69–76

    Google Scholar 

  • Fischer K, Phillips CA (2006) The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. J Appl Microbiol 101(6):1232–1240

    Google Scholar 

  • Fisher K, Phillips C (2008) Potential antimicrobial uses of essential oils in food: is citrus the answer? Trends Food Sci Technol 19:156–164

    CAS  Google Scholar 

  • Food Agriculture Organization, FAO (2004) Proceedings of the validation forumon the global cassava development strategy, global cassava market study business opportunities for the use of cassava, vol 6. International Fund for Agricultural Development, Roma

    Google Scholar 

  • Gagne N, Simpson BK (1993) Use of proteolytic enzymes to facilitate recovery of chitin from shrimp wastes. Food Biotechnol 7:253–263

    CAS  Google Scholar 

  • Garcia M, Martino M, Zaritzky N (1998) Plasticized starch based coatings to improved strawberry (Fragaria ananassa) quality and stability. J Agric Food Chem 46(9):3758–3767

    CAS  Google Scholar 

  • Garcia MA, Pinotti A, Martino M, Zaritzky N (2009) Electrically treated composite FILMS based on chitosan and methylcellulose blends. Food Hydrocolloids 23(3):722–728

    Google Scholar 

  • Gardner KH, Blakwell J (1975) Refinement of the structure of β-chitin. Biopolymers 14:1581

    CAS  Google Scholar 

  • Geraldine RM, de Fatima Ferreira Soares N, Alvarenga Botrel D, de Almeida Goncalves L (2008) Characterization and effect of edible coatings on minimally processed garlic quality. Carbohydr Polym 72:403–409

    CAS  Google Scholar 

  • Gómez-Estaca JL, de Lacey A, López-Caballero ME, Gómez-Guillén MC, Montero P (2010) Biodegradable gelatin chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol 27:889–896

    Google Scholar 

  • Gómez-Estaca J, Gómez-Guillén MC, Fernández-Martín F, Montero P (2011) Effects of gelatin origin, bovine-hide and tuna-skin, on the properties of compound gelatin–chitosan films. Food Hydrocolloids 25(6):1461–1469

    Google Scholar 

  • Günister E, Pestreli D, Ünlü CH, Atıcı O, Güngör N (2007) Synthesis and characterization of chitosan-MMT biocomposite systems. Carbohydrate Polymers 67:358–365

    Google Scholar 

  • Haider S, Park S-Y, Lee S-H (2008) Preparation, swelling and electro-mechano-chemical behaviors of a gelatin–chitosan blend membrane. Soft Matter 4:485–492

    CAS  Google Scholar 

  • Haiping Qi, Wenzhong Hu, Aili Jiang, Mixia Tian, Yingqiu Li (2011) Extending shelf-life of Fresh-cut “Fuji” apples with chitosan-coatings. Innovative Food Sci Emerg Technol 12(1): 1–84

    Google Scholar 

  • Han HD, Nam DE, Seo DH, Kim TW, Shin BC (2004) Preparation and biodegradation of thermosensitive chitosan hydrogel as a function of pH and temperature. Macromol Res 12:507–511

    CAS  Google Scholar 

  • Ham-Pichavant F, Sèbe G, Pardon P, Coma V (2005) Fat resistance properties of chitosan-based paper packaging for food applications. Carbohydr Polym 61:259–265

    CAS  Google Scholar 

  • Han Y-S, Lee S-H, Choi KH, Park I (2010) Preparation and characterization of chitosan–clay nanocomposites with antimicrobial activity. J Phys Chem 71(4):464–467

    CAS  Google Scholar 

  • He Q, Lv Y, Yao K (2006) Effects of tea polyphenols on the activities of a-amylase, pepsin, trypsin and lipase. Food Chemistry 101(3):1178–1182

    Google Scholar 

  • He Jiankang, Li Dichen, Liu Yaxiong, Yao Bo, Zhan Hanxiang, Lian Qin, Lu Bingheng, Lv Yi (2009) Preparation of chitosan–gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering. Acta Biomater 5:453–461

    Google Scholar 

  • Hernández-Muñoz P, Almenar E, Ocio MJ, Gavara R (2006) Effect of calcium dips and chitosan coatings on postharvest life of strawberries (Fragaria x ananassa). Postharvest Biol Technol 39(3):247–253

    Google Scholar 

  • Hernández-Muñoz P, Almenar E, Valle VD, Velez D, Gavara R (2008) Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria × ananassa) quality during refrigerated storage. Food Chem 110(2):428–435

    Google Scholar 

  • Hershko V, Nussinovitch A (1998) Relationships between hydrocolloid coating and mushroom structure. J Agric Food Chem 46:2988–2997

    CAS  Google Scholar 

  • Holley RA, Patel D (2005) Improvement of self-life and safety of perishable foods by plant essential oils and smoked antimicrobials. Food Microbiol 22(4):273–292

    CAS  Google Scholar 

  • Hosseini SF, Rezaei M, Zandi M, Ghavi FF (2013) Preparation and functional properties of fish gelatin–chitosan blend edible films. Food Chem 136:1490–1495

    Google Scholar 

  • Hsu S-h, Wang M-C, Lin J-J (2012) Biocompatibility and antimicrobial evaluation of montmorillonite/chitosan nanocomposites. Appl Clay Sci 56:53–62

    CAS  Google Scholar 

  • Huang J, Huang K, Liu S, Luo Q, Xu M (2007) Adsorption properties of tea polyphenols onto three polymeric adsorbents with amide group. J Colloid Interface Sci 315(2):407–414

    CAS  Google Scholar 

  • Huang J, Chen Q, Qiu M, Li S (2012) Chitosan-based edible coatings for quality preservation of postharvest white leg shrimp (Litopenaeus vannamei). J Food Sci 77(4):C491–C496

    CAS  Google Scholar 

  • Hunt S, Elsherief A (1990) A periodic structure in the pen chitin of the squid Loligo Vulgaris. Tissue Cell 22(2):19–197

    Google Scholar 

  • Ibrahim Sallam K (2007) Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon. Food Control 18:566–575

    CAS  Google Scholar 

  • Ioannou I, Ghoul M (2013) Prevention of enzymatic browning in fruit and vegetables. Eur Sci J 9(30)

    Google Scholar 

  • Irkin R, Guldas M (2014) Chitosan coating of red table grapes and fresh-cut honey melons to inhibit Fusarium oxysporum growth. J Food Process Preserv 38(4):1948–1956.

    Google Scholar 

  • Jafari SM, He Y, Bhandari B (2007) Production of sub-micron emulsions by ultrasound and microfluidization techniques. J Food Eng 82(4):478–488

    Google Scholar 

  • Jeon YJ, Kamil JYVA, Shahidi F (2002) Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod. J Agric Food Chem 50:5167–5178

    CAS  Google Scholar 

  • Jiang Y, Li Y (2001) Effects of chitosan on post harvest life and quality of longan fruit. Food Chem 73:139–143

    CAS  Google Scholar 

  • Joerger RD (2007) Antimicrobial films for food applications: a quantitative analysis of their effectiveness packaging technology and science. Packag Technol Sci 20:231–273

    CAS  Google Scholar 

  • Jridi M, Nasri R, Lassoued I, Souissi N, Mbarek A, Barkia A, Nasri M (2013) Food Res Int 54:1680–1687

    CAS  Google Scholar 

  • Jridia M, Hajji S, Ayed AB, Lassoueda IH, Mbarek A, Kammouna M, Souissic N, Nasri M (2014) Physical, structural, antioxidant and antimicrobial properties of gelatin–chitosan composite edible films. Int J Biol Macromol 67:373–379

    Google Scholar 

  • Kamil JYVA, Jeon YJ, Shahidi F (2002) Antioxidative activity of chitosans of different viscosity in cooked comminuted flesh of herring (Clupea harengus). Food Chem 79:69–77

    CAS  Google Scholar 

  • Kelnar I, Kaprálková L, Brožová L, Hromádková J, Kotek J (2013) Effect of chitosan on the behaviour of the wheat B-starch nanocomposite. Ind Crop Product 46:186–190

    CAS  Google Scholar 

  • Kerch G, Sabovics M, Kruma Z, Kampuse S, Straumite E (2011) Effect of chitosan and chitooligosaccharide on vitamin C and polyphenols contents in cherries and strawberries during refrigerated storage. Eur Food Res Technol 233:351–358

    CAS  Google Scholar 

  • Khanjari A, Karabagias IK, Kontominas MG (2013) Combined effect of N, O-carboxymethyl chitosan and oregano essential oil to extend shelf life and control Listeria monocytogenes in raw chicken meat fillets. LWT – Food Sci Technol 53(1):94–99

    CAS  Google Scholar 

  • Kim KW, Thomas RL (2007) Antioxidative activity of chitosans with varying molecular weights. Food Chem 101:308–313

    CAS  Google Scholar 

  • Kołodziejska I, Piotrowska B (2007) The water vapour permeability, mechanical properties and solubility of fish gelatin–chitosan films modified with transglutaminase or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and plasticized with glycerol. Food Chem 103:295–300

    Google Scholar 

  • Kumudavally KV, Phanindrakumar HS, Tabassum A, Radhakrishna K, Bawa AS (2008) Green tea- a potential preservative for extending the shelf life of fresh mutton at ambient temperature (25 ± 2 °C). Food Chem 107(1):426–433

    CAS  Google Scholar 

  • Lavorgna M, Piscitelli F, Mangiacapra P, Buonocor GG (2010) Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films. Carbohydr Polym 82:291–298

    CAS  Google Scholar 

  • Lee SH (1996) Effect of chitosan on emulsifying capacity of egg yolk. J Korean Soc Food Nutr 25(1):118–122

    CAS  Google Scholar 

  • Lee SH, No HK, Jeong YH (1996) Effect of chitosan coating on quality of egg during storage. J Korean Soc Food Nutr 25(2):288–293

    CAS  Google Scholar 

  • Lee SH, Jo OK (1998) Effect of Lithospermum erythrorhizon, Glycyrrhiza uralensis and dipping of chitosan on shelf-life of kimchi. Korean J Food Sci Technol 30(6):1367–1372

    Google Scholar 

  • Lee JS, Lee HJ (2000) Effects of chitosan and organic acid salts on the shelf-life and pectin fraction of kimchi during fermentation. Korean J Food Nutr 13(4):319–327

    Google Scholar 

  • Lee MH, No HK (2002) Effect of chitosan on shelf-life and quality of wet noodle. J Chitin Chitosan 7(1):14–17

    Google Scholar 

  • Lee HY, Park SM, Ahn DH (2003) Effect of storage properties of pork dipped in chitosan solution. J Korean Soc Food Sci Nutr 32(4):519–525

    CAS  Google Scholar 

  • Lei L, Zhi H, Xiujin Z, Takasuke I, Zaigui L (2007) Effects of different heating methods on the production of protein-lipid film. J Food Eng 82(3):292–297

    Google Scholar 

  • Li H, Gao X, Wang Y, Zhang X, Tong Z (2013) Comparison of chitosan/starch composite film properties before and after cross-linking. Int J Biol Macromol 52:275–279

    CAS  Google Scholar 

  • Lin D, Zhao Y (2007) Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compr Rev Food Sci Food Safe 6:60–75

    CAS  Google Scholar 

  • Liu XF, Guan YL, Yang DZ, Li Z, Yao KD (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79:1324–1335

    CAS  Google Scholar 

  • Liu Z, Ge X, Lu Y, Dong S, Zhao Y, Zeng M (2012) Effects of chitosan molecular weight and degree of deacetylation on the properties of gelatine-based films. Food Hydrocolloids 26:311–317

    Google Scholar 

  • Liu H, Adhikari R, Guo Q, Adhikari B (2013) Preparation and characterization of glycerol plasticized (high-amylose) chitosan–starch films. J Food Eng 116(2):588–597

    CAS  Google Scholar 

  • Liyan Wang, Yan Dong, Haitao Men, Jin Tong, Jiang Zhou (2013) Preparation and characterization of active films based on chitosan incorporated tea polyphenols. Food Hydrocolloids 32(1):35–41

    Google Scholar 

  • López-Caballero ME, Gómez-Guillén MC, Pérez-Mateos M, Montero P (2005) A chitosan–gelatin blend as a coating for fish patties. Food Hydrocolloids 19(2):303–311

    Google Scholar 

  • Martin-Diana AB, Rico D, Barry-Ryan C (2008) Green tea extract as a natural antioxidant to extend the shelf-life of fresh-cut lettuce. Innovative Food Sci Emerg Technol 9(4):593–603

    CAS  Google Scholar 

  • Mathew S, Abraham TE (2008) Characterisation of ferulic acid incorporated starch-chitosan blend films. Food Hydrocoll 22:826–835

    CAS  Google Scholar 

  • Mayachiew P, Devahastin S (2008) Antimicrobial and antioxidant activities of Indian gooseberry and galangal extracts. LWT – Food Sci Technol 41(7):1153–1159

    CAS  Google Scholar 

  • Mayachiew P, Devahastin S, Mackey BM, Niranjan K (2010) Effects of drying methods and conditions on antimicrobial activity of edible chitosan films enriched with galangal extract. Food Res Int 43(1):125–132, ISSN 0963–9969

    CAS  Google Scholar 

  • Mei J, Yuan Y, Yan W, Li Y (2013) Characterization of edible chitosan–starch film and its application in the storage of Mongolian cheese. Int J Biol Macromol 57:17–21

    CAS  Google Scholar 

  • Minke R, Blackwell J (1978) The structure of α-chitin. J Mol Biol 120:167

    CAS  Google Scholar 

  • Mohan CO, Ravishankar CN, Lalitha KV, Srinivasa Gopal TK (2011) Effect of chitosan edible coating on the quality of double filleted Indian oil sardine (Sardinella longiceps) during chilled storage. Food Hydrocolloids 26:167–174

    Google Scholar 

  • Mohan CO, Ravishankar CN, Lalitha KV, Srinivasa Gopal TK (2012) Effect of chitosan edible coating on the quality of double filleted Indian oil sardine (Sardinella longiceps) during chilled storage. Food Hydrocolloids 26:167–174

    CAS  Google Scholar 

  • Moon CS, Kim BS, Park KS, Hur JW (1997) Preservative effects of chitosan on acorn starch gels. Food Eng Prog 1(2):91–97

    Google Scholar 

  • Moradi M, Tajik H, Razavi Rohani SM, Oromiehie AR, Malekinejad H, Aliakbarlu J, Hadian M (2012) Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT – Food Sci Technol 46(2):477–484

    CAS  Google Scholar 

  • Moreira María del R, Roura SI, Ponce A (2011) Effectiveness of chitosan edible coatings to improve microbiological and sensory quality of fresh cut broccoli. LWT – Food Sci Technol 44:2335–2341

    Google Scholar 

  • Moufida S, Marzouk B (2003) Biochemical characterization of blood orange, sweet orange, lemon, bergamot and bitter orange. Phytochemistry 62(8):1283–1289

    CAS  Google Scholar 

  • Muzzarelli RAA, Frega N, Miliani M, Muzzarelli C, Cartolari M (2000) Interactions of chitin, chitosan, N-lauryl chitosan and N-dimethylaminopropyl chitosan with olive oil. Carbohydr Polym 43:263–268

    CAS  Google Scholar 

  • Nísperos-Carriedo MO (1994) Edible coatings and films based on polysaccharides. In: Krochta JM, Baldwin EA, Nisperos-Carriedo MO (eds) Edible coatings and films to improve food quality. Technomic, Lancaster, pp 305–335

    Google Scholar 

  • No HK, Park IK, Kim SD (1995) Extension of shelf-life of kimchi by addition of chitosan during salting. J Korean Soc Food Nutr 24(6):932–936

    CAS  Google Scholar 

  • No HK, Park NY, Lee SH, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74:65–72

    CAS  Google Scholar 

  • No HK, Meyers SP, Prinyawiwatkul W, Xu Z (2007) Applications of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci 72(5):87–100

    Google Scholar 

  • Oh YS, Shih IL, Tzeng YM, Wang SL (2000) Protease produced by Pseudomonas aeruginosa K-187 and its application in the deproteinization of shrimp and crab shell wastes. Enzyme Microb Technol 27:3–10

    CAS  Google Scholar 

  • Ojagh SM, Rezaei M, Razavi SH, Hosseini SMH (2010) Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem 120(1):193–198

    CAS  Google Scholar 

  • Ouattara B, Simard RE, Piette G, Bégin A, Holley RA (2000) Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Microbiology 62(1–2):139–148

    CAS  Google Scholar 

  • Ozdemir M, Floros JD (2004) Active food packaging technologies. Crit Rev Food Sci Nutr 44:185–193

    CAS  Google Scholar 

  • Park SM, Youn SK, Kim HJ, Ahn DH (1999) Studies on the improvement of storage property in meat sausage using chitosan-I. J Korean Soc Food Sci Nutr 28(1):167–171

    Google Scholar 

  • Park SI, Daeschel MA, Zhao Y (2004) Functional properties of chitosan-lysol composite films. J Food Sci 69:215–221

    Google Scholar 

  • Pawadee M, Malinee P, Thanawit P, Junya P (2003) Heterogeneous N deacetylation of squid chitin in alkaline solution. Carbohydr Polym 52:119–123

    Google Scholar 

  • Peiyin L, Barth MM (1998) Impact of edible coatings in nutritional and physiological changes in lightly processed carrots. Postharvest Biol Technol 14:51–60

    Google Scholar 

  • Pen LT, Jiang YM (2003) Effect of chitosan coating on shelf life and quality of fresh-cut Chinese water chestnut. Lebensm Wiss U Technol 36:359–364

    CAS  Google Scholar 

  • Pen LT, Jiang YM (2003a) Effects of chitosan coating on shelf life and quality of fresh-cut Chinese water chestnut. LWT – Food Sci Technol 36:359–364

    CAS  Google Scholar 

  • Pen LT, Jiang YM (2003b) Effect of chitosan coating on the shelf life and quality of fresh-cut Chinese water chestnut. LWT – Food Sci Technol 36:589–594

    Google Scholar 

  • Peng Y, Li Y (2014) Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocolloids 36:287–293

    CAS  Google Scholar 

  • Peng C, Wang Y, Tang Y (1998) Synthesis of crosslinked chitosan-crown ethers and evaluation of these products as adsorbents for metal ions. J Appl Polym Sci 70:501–506

    CAS  Google Scholar 

  • Perdones A, Sánchez -González L, Chiralt A, Vargas M (2012) Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol Technol 70:32–41

    CAS  Google Scholar 

  • Pereda M, Aranguren MI, Marcovich NE (2008) Characterization of chitosan/caseinate films. J Appl Polym Sci 107:1080–1090

    CAS  Google Scholar 

  • Pereda M, Ponce AG, Marcovich NE, Ruseckaite RA, Martucci JF (2011) Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll 25:1372–1381

    CAS  Google Scholar 

  • Pereda M, Amica G, Marcovich NE (2012) Development and characterization of edible chitosan/olive oil emulsion films. Carbohydr Polym 87:1318–1325

    CAS  Google Scholar 

  • Pushkala R, Raghuram PK, Srividya N (2013) Chitosan based powder coating technique to enhance phytochemicals and shelf life quality of radish shreds. Postharvest Biol Technol 86:402–408

    CAS  Google Scholar 

  • Quintavalla S, Vicini L (2002) Antimicrobial food packaging in meat industry. Meat Sci 62:373–380

    CAS  Google Scholar 

  • Rabea E, Badawy ME, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465

    CAS  Google Scholar 

  • Rane KD, Hoover DG (1993) An evaluation of alkali and acid treatment for chitosan extraction from fungi. Process Biochem 28:115–118

    CAS  Google Scholar 

  • Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    CAS  Google Scholar 

  • Ribeiro C, Vicente AA, Teixeira JA, Miranda C (2007) Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biol Technol 44(1):63–70

    CAS  Google Scholar 

  • Rivero S, Garcia MA, Pinotti A (2009) Composite and bi-layer films based on gelatin and chitosan. J Food Eng 90(4):531–539

    CAS  Google Scholar 

  • Roberts D, Greenwood M (2003) Listeria monocytogenes. In: Practical food microbiology, 3rd edn. Blackwell, Malden, pp 273–274

    Google Scholar 

  • Ruiz-Navajas Y, Viuda-Martos M, Sendra E, Perez-Alvarez JA, Fernández-López J (2013) In vitro antibacterial and antioxidant properties of chitosan edible films incorporated with Thymus moroderi or Thymus piperella essential oils. Food Control 30(2):386–392

    CAS  Google Scholar 

  • Salvia-Trujillo L, Rojas-Graü MA, Soliva-Fortuny R, Martín-Belloso O (2012) Effect of processing parameters on physicochemical characteristics of microfluidized lemongrass essential oil-alginate nanoemulsions. Food Hydrocolloids 30:401–407

    Google Scholar 

  • Sanchez-Gonzalez L, Gonzalez-Martinez C, Chiralt A, Cháfer M (2010a) Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. J Food Eng 98(4):443–452

    CAS  Google Scholar 

  • Sanchez-Gonzalez L, Chafer M, Chiralt A, Gonzalez-Martinez C (2010b) Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydr Polym 82:277–283

    CAS  Google Scholar 

  • Sanchez-Gonzalez L, Pastor C, Vargas M, Chiralt A, Gonzalez-Martinez C, Cháfer M (2011a) Effect of hydroxypropyl methylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biol Technol 60:57–63

    CAS  Google Scholar 

  • Sanchez-Gonzalez L, Vargas M, Gonzalez-Martinez C, Cháfer M, Chiralt A (2011b) Use of Essentials oils in bioactive edible coatings – a review. Food Eng Rev 3:1–16

    CAS  Google Scholar 

  • Sathivel S, Liu Q, Huang J, Prinyawiwatkul W (2007) The influence of chitosan glazing on the quality of skinless pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. J Food Eng 83:366–373

    CAS  Google Scholar 

  • Sebti I, Martial-Gros A, Carnet-Pantiez A, Grelier S, Coma V (2005) Chitosan polymer as bioactive coating and film against Aspergillus niger contamination. J Food Sci 70(2005):100–104

    Google Scholar 

  • Sebti I, Coma V (2002) Active edible polysaccharide coating and interactions between solution coating compounds. Carbohydr Polym 49:139–144

    CAS  Google Scholar 

  • Shen XL, Wu JM, Chen Y, Zhao G (2010) Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocoll 24:285–290

    CAS  Google Scholar 

  • Shurtleff W, Aoyagi A (1977) The book of Kudzu: a culinary & healing guide. Soyinfo Center, Lafayette, p 9. ISBN 978-0-394-42068-4

    Google Scholar 

  • Silva SS, Goodfellow BJ, Benesch J, Rocha J, Mano JF, Reis RL (2007) Morphology and miscibility of chitosan/soy protein blended membranes. Carbohydr Polym 70:25–31

    CAS  Google Scholar 

  • Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ (2004) Molecular interactions in collagen and chitosan blends. Biomaterials 25(5):795–801

    CAS  Google Scholar 

  • Siripatrawan U, Harte BR (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids 24(8):770–775

    CAS  Google Scholar 

  • Simões ADN, Tudela JA, Allende A, Puschmann R, Gil MI (2009) Edible coatings containing chitosan and moderate modified atmospheres maintain quality and enhance phytochemicals of carrot sticks. Postharvest Biol Technol 51(3):364–370

    Google Scholar 

  • Soares NM, Mendes TS, Vicente AA (2013) Effect of chitosan-based solutions applied as edible coatings and water glazing on frozen salmon preservation – a pilot-scale study. J Food Eng 119:316–323

    CAS  Google Scholar 

  • Souza BWS, Cerqueira MA, Casariego A, Lima AMP, Teixeira JA, Vicente AA (2009) Effect of moderate electric fields in the permeation properties of chitosan coatings Food Hydrocolloids 23(8):2110–2115

    CAS  Google Scholar 

  • Souza BWS, Cerqueira MA, Martins JT, Casariego A, Teixeira JA, Vicente AA (2010) Influence of electric fields on the structure of chitosan edible coatings. Food Hydrocolloids 24(4):330–335

    CAS  Google Scholar 

  • Srinivasa PC, Ramesh MN, Tharanathan RN (2007) Effect of plasticizers and fatty acids on mechanical and permeability characteristics of chitosan films. Food Hydrocolloids 21:1113–1122

    CAS  Google Scholar 

  • Suntornsuk W, Pochanavanich P, Suntornsuk L (2002) Fungal chitosan production on food processing by-products. Process Biochem 37:727–729

    CAS  Google Scholar 

  • Suppakul P, Miltz J, Sonneveld K, Bigger SW (2003) Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J Food Sci 68:408–420

    CAS  Google Scholar 

  • Svoboda K, Greenaway RI (2003) Lemon scented plants. Int J Aromatherapy 13(1):23–32

    Google Scholar 

  • Tripathi S, Mehrotra GK, Tripathi CKM, Banerjee B, Joshi AK, Dutta PK (2008) Chitosan based bioactive film: functional properties towards biotechnological needs. Asian Chitin J 4:29–36

    Google Scholar 

  • Valenzuela C, Abugoch L, Tapia C (2013) Quinoa protein–chitosan–sunflower oil edible film: mechanical, barrier and structural properties. LWT – Food Sci Technol 50(2):531–537

    CAS  Google Scholar 

  • Vargas M, Albors A, Chiralt A, Gonzalez-Martınez C (2009) Characterization of chitosan–oleic acid composite films. Food Hydrocoll 23:536–547

    CAS  Google Scholar 

  • Vásconez MB, Flores SK, Campos CA, Alvarado JG, Gerschenson LN (2009) Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res Int 42:762–769

    Google Scholar 

  • Vazquez JA, Zawawi AA (2002) Efficacy of alcohol-based and alcohol-free melaleuca oral solution for the treatment of fluconazole-refractory oropharyngeal candidiasis in patients with AIDS. HIV Clin Trials 3:379–385

    Google Scholar 

  • Viuda-Martos, Ruiz-Navajas, Fernández-López, Perez-Álvarez (2008) Antibacterial activity of lemon (citrus lemon, L), mandarin (citrus reticulata, L) grapefruit (Citrus paradisi, L) essential oils. J Food Safety 28:567–576

    Google Scholar 

  • Vu KD, Hollingsworth RG, Leroux E, Salmieri S, Lacroix M (2011) Development of edible bioactive coating based on modified chitosan for increasing the shelf life of strawberries. Food Res Int 44(1):198–203

    CAS  Google Scholar 

  • Wang S, Shen L, Tong Y, Chen L, Phang I, Lim P, Liu T (2005) Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stab 90(1):123–131

    CAS  Google Scholar 

  • Wang SL, Kaoc TY, Wang YH, Yen YH, Chern TY, Chen YH (2006) A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in deproteinization of squid pen for b chitin preparation. Enzyme Microb Technol 39:724–731

    CAS  Google Scholar 

  • Wang L, Wu H, Qin G, Meng X (2014) Chitosan disrupts Penicillium expansum and controls postharvest blue mold of jujube fruit. Food Control 4(1):56–62

    Google Scholar 

  • Xiao C, Zhu L, Luo W, Song X, Deng Y (2010) Combined action of pure oxygen pretreatment and chitosan coating incorporated with rosemary extracts on the quality of fresh-cut pears. Food Chem 121:1003–1009

    CAS  Google Scholar 

  • Xiao Z, Luo Y, Luo Y, Wang Q (2011) Combined effects of sodium chlorite dip treatment and chitosan coatings on the quality of fresh-cut d'Anjou pears. Postharvest Biol Technol 62(3):319–326

    CAS  Google Scholar 

  • Xing Y, Li X, Xu Q, Jiang Y, Yun J, Li W (2010) Effects of chitosan-based coating and modified atmosphere packaging (MAP) on browning and shelf life of fresh-cut lotus root (Nelumbo nucifera Gaerth). Innovative Food Sci Emerg Technol 11(4):684–689

    CAS  Google Scholar 

  • Xu YX, Kim KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: preparation and characterization. Ind Crops Prod 21:185–192

    CAS  Google Scholar 

  • Xu Y, Ren X, Hanna MA (2006) Chitosan/clay nanocomposite film preparation and characterization. J Appl Polym Sci 99:1684–1691

    CAS  Google Scholar 

  • Yang JK, Shih IL, Tzeng YM, Wang SL (2000) Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microb Technol 26:406–413

    CAS  Google Scholar 

  • Yang CS, Lambert JD, Sang S (2009) Antioxidative and anti-carcinogenic activities of tea polyphenols. Archiv Toxicol 83(1):11–21

    CAS  Google Scholar 

  • Yoo D, Shiratori SS, Rubner MF (1998) Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of weak polyelectrolytes. Macromolecules 31(13):4309–4318

    CAS  Google Scholar 

  • Youn SK, Park SM, Kim YJ, Ahn DH (1999) Effect on storage property and quality in meat sausage by added chitosan. J Chitin Chitosan 4(4):189–195

    Google Scholar 

  • Youn SK, Park SM, Ahn DH (2000) Studies on the improvement of storage property in meat sausage using chitosan. II Difference of storage property by molecular weight of chitosan. J Korean Soc Food Sci Nutr 29(5):849–853

    CAS  Google Scholar 

  • Youn SK, Kim YJ, Ahn DH (2001a) Antioxidative effects of chitosan in meat sausage. J Korean Soc Food Sci Nutr 30(3):477–481

    CAS  Google Scholar 

  • Youn SK, Park SM, Kim YJ, Ahn DH (2001b) Studies on substitution effect of chitosan against sodium nitrite in pork sausage. Korean J Food Sci Technol 33(5):551–559

    Google Scholar 

  • Zhai M, Zhao L, Yoshii F, Kume T (2004) Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydr Polym 57(1):83–88

    CAS  Google Scholar 

  • Zhong Y, Song X, Li Y (2011) Antimicrobial, physical and mechanical properties of kudzu chitosan–starch composite films as a function of acid solvent types. Carbohydr Polym 84:335–342

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Z. Elsabee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Elsabee, M.Z. (2014). Chitosan -Based Edible Films. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-03751-6_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03751-6_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-03751-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics