Skip to main content

Physical Water Treatment Using Oscillating Electric Fields to Mitigate Scaling in Heat Exchangers

  • Chapter
  • First Online:
Frontiers and Progress in Multiphase Flow I

Part of the book series: Frontiers and Progress in Multiphase Flow ((FPMF))

Abstract

This chapter presents an environment-friendly method to mitigate scaling in heat exchangers. A new physical water treatment (PWT) using high-frequency oscillating electric fields produced directly in water was used to mitigate scaling of heat transfer surfaces. The new method of using high-frequency oscillating electric fields directly in water is a major improvement over the previous PWT methods (i.e., low electric field strength, about ~1 mV/cm, and low allowable frequency, ~2 kHz). Both artificial and natural hard water at varying calcium carbonate hardness were used. Different combinations of voltages and frequencies were investigated to get the optimum values for the mitigation of scaling. It is hypothesized that the oscillating electric fields in the present PWT method precipitate the dissolved mineral ions such as calcium to mineral salts in bulk water. As the mineral ions continue to precipitate and adhere on the surfaces of the suspended particles, the particles grow in size and adhere to the solid heat transfer surface in the form of soft sludge or particulate fouling. This type of fouling is believed to be easily removed by shear forces created by flow than those deposits produced from the precipitation of mineral ions directly on the solid heat transfer surface, i.e., precipitation fouling. The new PWT method using oscillating electric fields presents a valid tool to mitigate scaling in heat exchangers from cooling water. The work in this book is based from the PhD dissertation of the first author at the Division of Mechanical Design Engineering at Chonbuk National University. Section 3.1 presents an overview of mineral fouling and the different methods to mitigate the fouling formation in heat exchangers, focusing on physical water treatment. Sections 3.2, 3.3, 3.4 and 3.5 give in detail the experimental work and discussion of the use of oscillating electric fields as a means to mitigate mineral fouling in a double-pipe heat exchanger. Section 3.6 summarizes the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ao :

Outer surface area of copper tube (m2)

cp :

Specific heat of water (J/kg K)

d:

Diameter of copper tube (m)

D:

Diameter of quartz crystal (m)

f:

Frequency (Hz)

H:

Height (m)

L:

Length (m)

\( \mathop {\text{m}}\limits^. \) :

Mass flow rate (kg/s)

Mw:

Molecular weight (g/mol)

Q:

Heat transfer rate (W)

Rf :

Fouling resistance (m2K/W)

ΔT:

Temperature difference (°C)

U:

Overall heat transfer coefficient (W/m2 K)

W:

Width (m)

θ:

Diffraction angle (°)

c:

Cold side

f:

Fouled state

h:

Hot side

ini:

Initial clean state

in:

Inner

lmtd:

Log-mean-temperature difference (°C)

out:

Outer

q:

Quartz crystal

t:

Tube (copper)

References

  1. T.R. Bott, Fouling of Heat Exchangers (Elsevier, The Netherlands, 1995)

    Google Scholar 

  2. E.F.C. Somerscales, Fouling of heat transfer surface: an historical review. Heat Transf. Eng. 11(1), 19–36 (1990)

    Article  Google Scholar 

  3. W. Li, R.L. Webb, Fouling in enhanced tubes using cooling tower water Part II: combined particulate and precipitation fouling. Int. J. Heat Mass Transf. 43(19), 3579–3588 (2000)

    Article  MATH  Google Scholar 

  4. T.Q. Liu, X.Q. Li, H.L. Wang, X.Y. Sun, Formation process of mixed fouling of microbe and CaCO3 in water systems. Chem. Eng. J. 88(1–3), 249–254 (2002)

    Article  Google Scholar 

  5. Y.I. Cho, S.H. Lee, W. Kim, Physical water treatment for the mitigation of mineral fouling in cooling-water applications. ASHRAE 109, 346–357 (2003)

    Google Scholar 

  6. Y.I. Cho, A.F. Fridman, S.H. Lee, W.T. Kim, Physical water treatment for fouling prevention in heat exchangers. Adv. Heat Transf. 38, 1–71 (2004)

    Article  Google Scholar 

  7. C.B. Panchal, K. JG, Mitigation of water fouling: technology status and challenges. Adv. Heat Transf. 31, 431–474 (1998)

    Article  Google Scholar 

  8. T.R. Bott, Aspects of crystallization fouling. Exp. Therm. Fluid Sci. 14(4), 356–360 (1997)

    Article  Google Scholar 

  9. T. Kuppan, Heat Exchanger Design Handbook (Marcel Dekker, New York, 2000)

    Google Scholar 

  10. The U.S. Department of Energy, Non-chemical technologies for scale and hardness control. DOE/EE-0162. (1998)

    Google Scholar 

  11. R. Steinhagen, H. Mullersteinhagen, K. Maani, Problems and costs due to heat-exchanger fouling in New-Zealand industries. Heat Transf. Eng. 14(1), 19–30 (1993)

    Article  Google Scholar 

  12. S. Radler, U. Ousko-Oberhoffer, Optimised heat exchanger management—achieving financial and environmental targets. in Proceedings of the 6th International Conference on Heat Exchanger Fouling and Cleaning—Challenges and Opportunities RP2, 2005

    Google Scholar 

  13. H. Muller-Steinhagen, Handbook of Heat Exchanger Fouling—Mitigation and Cleaning Technologies (Publico Publications, Germany, 2000)

    Google Scholar 

  14. L.D. Tijing, H.Y. Kim, D.H. Lee, C.S. Kim, Y.I. Cho, Use of an oscillating electric field to mitigate mineral fouling in a heat exchanger. Exp. Heat Transf. 22(4), 257–270 (2009)

    Article  Google Scholar 

  15. Y.I. Cho, J. Lane, W. Kim, Pulsed-power treatment for physical water treatment. Int. Commun. Heat Mass 32(7), 861–871 (2005)

    Article  Google Scholar 

  16. K.D. Demadis, E. Mavredaki, A. Stathoulopoulou, E. Neofotistou, C. Mantzaridis, Industrial water systems: problems, challenges and solutions for the process industries. Desalination 213(1–3), 38–46 (2007)

    Article  Google Scholar 

  17. J. Lane, Y.I. Cho, W. Kim, Pulsed-power water treatment as a green scale inhibitor for HVAC and once-through industrial systems. Corrosion Paper 04541, 1–21 (2004)

    Google Scholar 

  18. L.D. Tijing, B.C. Pak, D.H. Lee, Y.I. Cho, Heat-treated titanium balls for the mitigation of mineral fouling in heat exchangers. Exp. Heat Transf. 21(2), 115–132 (2008)

    Article  Google Scholar 

  19. K.J. Kronenberg, Physical water treatment de-mystified. Magnets 6–15 (1986)

    Google Scholar 

  20. S.S. Al-Jaroudi, A. Ul-Hamid, J.A. Al-Matar, Prevention of failure in a distillation unit exhibiting extensive scale formation. Desalination 260(1–3), 119–128 (2010)

    Article  Google Scholar 

  21. B. Bansal, H. Muller-Steinhagen, Crystallisation fouling in plate heat exchangers. ASME J. Heat Transf. 115, 584–591 (1993)

    Article  Google Scholar 

  22. A. Helalizadeh, H. Muller-Steinhagen, M. Jamialahmadi, Mixed salt crystallisation fouling. Chem. Eng. Process. 39(1), 29–43 (2000)

    Article  Google Scholar 

  23. M. G. Mwaba, Analysis of heat exchanger fouling in cane industry. Dissertation, Eindhoven University of Technology, The Netherlands, 2003

    Google Scholar 

  24. D. Hasson, Rate of decrease of heat transfer due to scale deposition. Dechema-Monographien 47, 233–252 (1962)

    Google Scholar 

  25. F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, 5th edn. (Wiley, New York, 2002)

    Google Scholar 

  26. J. Nesta, C.A. Bennet, Fouling mitigation by design. in Proceedings of the 6th International Conference on Heat Exchanger Fouling and Cleaning—Challenges and Opportunities RP2, 5–10 June 2005

    Google Scholar 

  27. D.J. Kukulka, M. Devgun, Fluid temperature and velocity effect on fouling. Appl. Therm. Eng. 27(16), 2732–2744 (2007)

    Article  Google Scholar 

  28. W.T. Kim, C. Bai, Y.I. Cho, A study of CaCO3 fouling with a microscopic imaging technique. Int. J. Heat Mass Transf. 45(3), 597–607 (2002)

    Article  Google Scholar 

  29. H. Muller-Steinhagen, Cooling water fouling in heat exchangers. Adv. Heat Transf. 33, 415–496 (1999)

    Article  Google Scholar 

  30. W.T. Kim, Y.I. Cho, Experimental study of the crystal growth behavior of CaCO3 fouling using a microscope. Exp. Heat Transf. 13(2), 153–161 (2000)

    Article  Google Scholar 

  31. A.P. Watkinson, O. Martinez, Scaling of heat exchanger tubes by calcium carbonate. Trans. ASME 97, 504–508 (1975)

    Article  Google Scholar 

  32. D. Hasson, M. Avriel, W. Resnick, T. Rozenman, S. Windreich, Mechanism of calcium carbonate scale deposition on heat-transfer surface. Ind. Eng. Chem. Fund 7, 58–63 (1968)

    Article  Google Scholar 

  33. J.C. Cowan, D.J. Weintritt, Water-Formed Scale Deposits (Gulf-Publishing Company, Houston, 1976)

    Google Scholar 

  34. J. MacAdams, S. Parsons, Calcium carbonate scale formation and control. Rev. Environ. Sci. Bio/Technol. 3, 159–169 (2004)

    Article  Google Scholar 

  35. D. Chapman, A Guide to the Use of Biota, Sediments and Water in Environmental Monitoring (Chapman Hall, London, 1992)

    Book  Google Scholar 

  36. V. Snoeyink, D. Jenkins, Water Chemistry (Wiley, New York, 1980)

    Google Scholar 

  37. R. Ketrane, B. Saidani, O. Gil, L. Leleyter, F. Baraud, Efficiency of five scale inhibitors on calcium carbonate precipitation from hard water: effect of temperature and concentration. Desalination 249(3), 1397–1404 (2009)

    Article  Google Scholar 

  38. T. Casanueva-Robles, T. Bott, The environmental effect of heat exchanger fouling: a case study. in Proceedings of the 6th International Conference on Heat Exchanger Fouling and Cleaning—Challenges and Opportunities RP2, 5–10 June 2005

    Google Scholar 

  39. L. Melo, T. Bott, C. Bernardo, Fouling science and technology E: applied science. in NATO ASI Series 145 (Kluwer, The Netherlands, 1988)

    Google Scholar 

  40. D.M. Yebra, S. Kiil, K. Dam-Johansen, Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog. Org. Coat. 50(2), 75–104 (2004)

    Article  Google Scholar 

  41. S.A. Parsons, S.J. Judd, T. Stephenson, S. Udol, B.L. Wang, Magnetically augmented water treatment. Process Saf. Environ. 75(B2), 98–104 (1997)

    Article  Google Scholar 

  42. J. Donaldson, S. Grimes, Lifting the scales from our pipes. New Sci. 117(1600), 43–46 (1988)

    Google Scholar 

  43. C. Smith, P.P. Coetzee, J.P. Meyer, The effectiveness of a magnetic physical water treatment device on scaling in domestic hot-water storage tanks. Water SA 29(3), 231–236 (2003)

    Google Scholar 

  44. J.S. Baker, S.J. Judd, Magnetic amelioration of scale formation. Water Res. 30(2), 247–260 (1996)

    Article  Google Scholar 

  45. A. Fathi, T. Mohamed, G. Claude, G. Maurin, B.A. Mohamed, Effect of a magnetic water treatment on homogeneous and heterogeneous precipitation of calcium carbonate. Water Res. 40(10), 1941–1950 (2006)

    Article  Google Scholar 

  46. X.K. Xing, Research on the electromagnetic anti-fouling technology for heat transfer enhancement. Appl. Therm. Eng. 28(8–9), 889–894 (2008)

    Google Scholar 

  47. X.K. Xing, C.F. Ma, Y.C. Chen, Investigation on the electromagnetic anti-fouling technology for scale prevention. Chem. Eng. Technol. 28(12), 1540–1545 (2005)

    Article  Google Scholar 

  48. Z.H. Quan, Y.C. Chen, C.F. Ma, C.M. Wang, B. Li, Experimental study on anti-fouling performance in a heat exchanger with low voltage electrolysis treatment. Heat Transf. Eng. 30(3), 181–188 (2009)

    Article  Google Scholar 

  49. G. Ushakov, Antiscaling treatment of water by an electric field in heat-supply networks. Therm. Eng. 55(7), 570–573 (2008)

    Article  Google Scholar 

  50. A. Shahryari, M. Pakshir, Influence of a modulated electromagnetic field on fouling in a double-pipe heat exchanger. J. Mater. Process Tech. 203(1–3), 389–395 (2008)

    Article  Google Scholar 

  51. Y.I. Cho, B.G. Choi, B.J. Drazner, Electronic anti-fouling technology to mitigate precipitation fouling in plate-and-frame heat exchangers. Int. J. Heat Mass Transf. 41(17), 2565–2571 (1998)

    Article  Google Scholar 

  52. G.J. Lee, L.D. Tijing, B.C. Pak, B.J. Baek, Y.I. Cho, Use of catalytic materials for the mitigation of mineral fouling. Int. Commun. Heat Mass 33(1), 14–23 (2006)

    Article  Google Scholar 

  53. P.P. Coetzee, M. Yacoby, S. Howell, S. Mubenga, Scale reduction and scale modification effects induced by Zn and other metal species in physical water treatment. Water SA 24(1), 77–84 (1998)

    Google Scholar 

  54. J. Macadam, S.A. Parsons, Calcium carbonate scale control, effect of material and inhibitors. Water Sci. Technol. 49(2), 153–159 (2004)

    Google Scholar 

  55. Q.G. Tang, J.P. Meng, J.S. Liang, L. Nie, Y.X. Li, Effects of copper based alloys on the nucleation and growth of calcium carbonate scale. J. Alloy. Compd. 491(1–2), 242–247 (2010)

    Article  Google Scholar 

  56. L.D. Tijing, M.H. Yu, C.H. Kim, A. Amarjargal, Y.C. Lee, D.H. Lee, D.W. Kim, C.S. Kim, Mitigation of scaling in heat exchangers by physical water treatment using zinc and tourmaline. Appl. Therm. Eng. 31(11–12), 2025–2031 (2011)

    Article  Google Scholar 

  57. H. Al-Qahtani, Effect of magnetic treatment on gulf seawater. Desalination 107, 75–81 (1996)

    Article  Google Scholar 

  58. S. Kazi, G. Duffy, X. Chen, Mineral scale formation and mitigation on metals and a polymeric heat exchanger surface. Appl. Therm. Eng. 30(14–15), 2236–2242 (2010)

    Article  Google Scholar 

  59. L. Tijing, B. Pak, B. Baek, D. Lee, Y. Cho, An experimental study on the bulk precipitation mechanism of physical water treatment for the mitigation of mineral fouling. Int. Commun. Heat Mass Trans. 34, 673–681 (2007)

    Article  Google Scholar 

  60. N. Kim, R. Webb, Particulate fouling of water in tubes having a two-dimensional roughness geometry. Int. J. Heat. Mass. Trans. 34, 2727–2738 (1991)

    Article  Google Scholar 

  61. E. Somerscales, A. Ponteduro, A. Bergles, Particulate of heat transfer tubes enhanced on their inner surface. ASME Fouling Enhan. Inter. 164, 17–28 (1991)

    Google Scholar 

  62. O. Sohnel, J. Mullin, Some comments on the influence of a magnetic field on crystalline scale formation. Chem. Ind. 6, 356–358 (1988)

    Google Scholar 

  63. D. Lisitsin, Q. Yang, D. Hasson, R. Semiat, Inhibition of CaCO3 scaling on RO membranes by trace amounts of zinc ions. Desalination 183, 289–300 (2005)

    Article  Google Scholar 

  64. C. Gabrielli, R. Jaouhari, G. Maurin, M. Keddam, Magnetic water treatment for scale prevention. Wat Res. 35(13), 3249–3259 (2001)

    Article  Google Scholar 

  65. F. Alimi, M. Tlili, M. Ben Amor, C. Gabrielli, G. Maurin, Influence of magnetic field on calcium carbonate precipitation. Desalination 206, 163–168 (2007)

    Article  Google Scholar 

  66. J. Kim, J. Jung, I. Yeom, G. Aoh, Electric fields treatment for the reduction of membrane fouling, the inactivation of bacteria and the enhancement of particle coagulation. Desalination 202, 31–37 (2007)

    Article  Google Scholar 

  67. S. Lee, A study of physical water treatment technology to mitigate the mineral fouling in a heat exchanger. Dissertation, Drexel University, Philadelphia, PA, 2002

    Google Scholar 

  68. L.D. Tijing, H.Y. Kim, D.H. Lee, C.S. Kim, Y.I. Cho, Physical water treatment using RF electric fields for the mitigation of CaCO3 fouling in cooling water. Int. J. Heat Mass Tran. 53(7–8), 1426–1437 (2010)

    Article  Google Scholar 

  69. K. Busch, M. Busch, Laboratory studies on magnetic water treatment and their relationship to a possible mechanism for scale reduction. Desalination 109, 131–148 (1997)

    Article  Google Scholar 

  70. D. Parker, An investigation of the role of magnetic water treatment devices in calcium carbonate scale formation. MS thesis, Baylor University, Texas, 1985

    Google Scholar 

  71. J. Grutsch, J. McClintock, Corrosion and deposit control in alkaline cooling water using magnetic water treatment at AMOCO’s largest refinery. Corrosion 84(330), 1–26 (1984)

    Google Scholar 

  72. J. Bogatin, Magnetic treatment of irrigation water: experimental results and application conditions. Environ. Sci. Technol. 33, 1280–1285 (1999)

    Article  Google Scholar 

  73. K. Kronenberg, Experimental evidence for effects of magnetic fields on moving water. IEEE Trans. Magnet MAG-21, 2059–2061 (1985)

    Article  Google Scholar 

  74. L. Lipus, J. Krope, L. Garbai, Magnetic water treatment for scale prevention. Hungarian J. Indus. Chem. 22, 239–242 (1994)

    Google Scholar 

  75. R. Marth, A scientific definition of the magnetic treatment of water: Its subsequent use in preventing scale formation and removing scale. MTW Introduction 6.1 (1997)

    Google Scholar 

  76. R. Szostak Magnetic fluid conditioning system allows 3000 ppm hardness without cooling tower scale buildup. Chem. Proc. 44–45 (1985)

    Google Scholar 

  77. R. Diamant, Magnetic treatment of water. Hosp. Eng. 24, 231 (1970)

    Google Scholar 

  78. T. Vermeiren, Magnetic treatment of liquids for scale and corrosion prevention. Cor. Technol. 5, 215–219 (1958)

    Google Scholar 

  79. V. Belova, Magnetic treatment of water. Sov. Sci. Rev. 90, 150–156 (1972)

    Google Scholar 

  80. Y. Wang, J. Babchin, L. Chernyi, R. Chow, R. Sawatzky, Rapid onset of calcium carbonate crystallization under the influence of a magnetic field. Wat. Res. 31, 346–350 (1997)

    Article  Google Scholar 

  81. S. Nasrazadani, T. Chao Laboratory evaluations of ozone as a scale inhibitor for use in open recirculating cooling systems. ASHRAE Research Project 765-RP, Final Report (1994)

    Google Scholar 

  82. R. Sheikholeslami, A. Watkinson, Scaling of plain and externally finned heat exchanger tubes. J. Heat Trans. 108, 147–152 (1986)

    Article  Google Scholar 

  83. R. Morse, J. Knudsen, Effect of alkalinity on the scaling of simulated cooling tower water. Can. J. Chem. Eng. 55, 272–278 (1977)

    Article  Google Scholar 

  84. T. Paakkonen, M. Riihimaki, E. Puhukka, E. Muurinen, C. Simonson, R. Keiski, Crystallization fouling of CaCO3—Effect of bulk precipitation on mass deposition on the heat transfer surface. in Proceedings of International Conference on Heat Exchanger Fouling and Cleaning VII, Schladming, (Austria 2009)

    Google Scholar 

  85. Federal Communications Commission, Operating frequencies. Code of Federal Regulations 1(18):301 (2007)

    Google Scholar 

  86. Y. Cho, W. Kim, D. Cho, Electro-flocculation mechanism of physical water treatment for the mitigation of mineral fouling in a heat exchanger. Exp. Heat Trans. 20(4), 323–335 (2007)

    Article  Google Scholar 

  87. R. Gehr, Z.A. Zhai, J.A. Finch, S.R. Rao, Reduction of soluble mineral concentrations in CaSO4 saturated water using a magnetic-field. Water Res. 29(3), 933–940 (1995)

    Article  Google Scholar 

  88. L.D. Tijing, D.H. Lee, D.W. Kim, Y.I. Cho, C.S. Kim, Effect of high-frequency electric fields on calcium carbonate scaling. Desalination 279(1–3), 47–53 (2011)

    Article  Google Scholar 

  89. G. Hearn, Static Electricity: Guidance for Plant Engineers. Graham Hearn–Wolfson Electrostatics (University of Southampton, 2002)

    Google Scholar 

  90. W. Li, Modeling liquid-side particulate fouling in internal helical-rib tubes. Chem. Eng. Sci. 62, 4204–4213 (2007)

    Article  Google Scholar 

  91. F. Kline, F. McClintock, Describing uncertainties in single sample experiments. Mech. Eng. 75, 3–8 (1953)

    Google Scholar 

  92. C. Fan, Y. Cho, Microscopic observation of calcium carbonate particles: validation of an electronic anti-fouling technology. Int. Commun. Heat Mass Trans. 24(6), 747–756 (1997)

    Article  Google Scholar 

  93. Q. Yang, Y. Liu, A. Gu, J. Ding, Z. Shen, Investigation of induction period and morphology of CaCO3 fouling on heated surface. Chem. Eng. Sci. 57, 921 (2002)

    Article  Google Scholar 

  94. S. Parsons, B. Wang, S. Judd, T. Stephenson, Magnetic treatment of calcium carbonate scale—effect of pH control. Wat. Res. 31(2), 339–342 (1997)

    Article  Google Scholar 

  95. N. Andritsos, A. Karabelas, The influence of particulates on CaCO3 scale formation. J. Heat Trans. 121, 225–227 (1999)

    Article  Google Scholar 

  96. D. Dawson, A non-chemical water treatment system. Corros. Prev. Contr. 61–64 (1990)

    Google Scholar 

  97. B. Hauser, Drinking Water Chemistry: A Laboratory Manual (CRC Press, LLC, Florida, 2002)

    Google Scholar 

  98. E. Chibowski, L. Hotysz, A. Szczes, Time dependent changes in zeta potential of freshly precipitated calcium carbonate. Colloid Surf. A 222(1–3), 41–54 (2003)

    Article  Google Scholar 

  99. S. Lee, Y. Cho, Velocity effect on electronic-antifouling technology to mitigate mineral fouling in enhanced-tube heat exchanger. Int. J. Heat Mass Trans. 45, 4136–4174 (2002)

    Google Scholar 

  100. J. Knudsen, Conquer cooling-water fouling. Chem. Eng. Prog. 87(4), 42–48 (1991)

    Google Scholar 

  101. C. Kontoyannis, N. Vagena, Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst 125, 251–255 (1999)

    Article  Google Scholar 

  102. W. Smith, Principles of Materials Science and Engineering (McGraw-Hill, Singapore, 1986)

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the National Research Foundation of Korea, the faculty of the Division of Mechanical Design Engineering, and friends and colleagues at the Physical Water Treatment and Biosystems Laboratory at Chonbuk National University, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard D. Tijing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tijing, L.D., Kim, C.S., Lee, D.H., Cho, Y.I. (2014). Physical Water Treatment Using Oscillating Electric Fields to Mitigate Scaling in Heat Exchangers. In: Cheng, L. (eds) Frontiers and Progress in Multiphase Flow I. Frontiers and Progress in Multiphase Flow. Springer, Cham. https://doi.org/10.1007/978-3-319-04358-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04358-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04357-9

  • Online ISBN: 978-3-319-04358-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics