Skip to main content

Porous Silicon and Functional Foods

  • Living reference work entry
  • First Online:
Handbook of Porous Silicon
  • 364 Accesses

Abstract

Functional foods are often described as those that can have a positive effect on health beyond basic nutrition. Examples include cholesterol-lowering oatmeal, bacteria-loaded yogurt for gut health, and iodine-fortified bread for prevention of thyroid disease. There is growing evidence that orthosilicic acid, the biodegradation product of porous silicon, can have a positive contribution to optimizing bone health . The relevant nutritional literature on silicic acid and trials related to osteoporosis are collated and discussed. Silica microparticles (and inadvertently nanoparticles) have been used for decades as an approved food additive. Preliminary studies have shown that porous silicon has high chemical stability in many stored foodstuffs and dissolves in intestinal fluid faster than in gastric fluid and that the taste and mouthfeel of oxidized porous silicon microparticles can be acceptable. The potential uses of mesoporous silicon or silica particles in both protecting and raising bioavailability of ingested high-value nutrients are analyzed. Despite its technical potential, inexpensive and very scalable fabrication routes are required if porous silicon is to have significant uptake by the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agostini C et al (2011) Scientific opinion on the substantiation of health claims related to silicon. EFSA J 9(6):2259

    Google Scholar 

  • Anderson SHC, Elliott H, Wallis DJ, Canham LT, Powell JJ (2003) Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. Phys Stat Solidi A 197(2):331–335

    Article  Google Scholar 

  • Arumugam MQ, Ireland DC, Brooks RA, Rushton N, Bonfield W (2006) The effect of orthosilicic acid on collagen type 1, alkaline phosphatase and osteocalcin mRNA expression in human bone-derived osteoblasts in vitro. Bioceramics 18 (1–2) Key Engn Mater 309–311: 121–124

    Google Scholar 

  • Batchelor L, Loni A, Canham LT, Hasan M, Coffer JL (2012) Manufacture of mesoporous silicon from living plants and agricultural waste: an environmentally friendly and scalable process. Silicon 4:259–266

    Article  Google Scholar 

  • Bernados A, Aznar E, Coll C, Martinez-Menez R, Barat JM, Marcos MD, Sancenon F, Benito A, Soto J (2008) Controlled release of vitamin B” using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. J Control Release 131:181–189

    Article  Google Scholar 

  • Bernardos A, Kourimska L (2013) Applications of mesoporous silica materials in food – a review. Czech J Food Sci 31(2):99–107

    Google Scholar 

  • Bisse E, Epting T, Beil A et al (2005) Reference values for serum silicon in adults. Anal Biochem 337:130–135

    Article  Google Scholar 

  • Bowen HJM, Peggs A (1984) Determination of the silicon content of foods. J Sci Food Agr 35:1225–1229

    Article  Google Scholar 

  • Brady R, Woonton B, Gee ML, O’Connor AJ (2007) Hierarchical mesoporous silica materials for separation of functional food ingredients – a review. Innov Food Sci Emer Technol 9(2):243–248

    Article  Google Scholar 

  • Canham LT (2007a) Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology 18:185

    Article  Google Scholar 

  • Canham LT (2007b) Food comprising silicon. International Patent WO 2007/012847

    Google Scholar 

  • Canham LT, Loni A, Godfrey A (2010) Colouring techniques. International Patent no WO/2010/038065

    Google Scholar 

  • Carlisle EM (1970) Silicon: a possible factor in bone calcification. Science 167(3916):279–280

    Article  Google Scholar 

  • Carlisle EM (1972) Silicon: an essential element for the chick. Science 178:619

    Article  Google Scholar 

  • Carlisle EM (1981) Chapter 4, Silicon in bone formation. In: Simpson TL, Volcani BE (eds) Silicon and siliceous structures in biological systems. Springer, Berlin, pp 69–94

    Chapter  Google Scholar 

  • Chandrasekar G, Vinu A, Murugesan V, Hartmann M (2005) Adsorption of vitamin E on mesoporous silica molecular sieves. Stud Surf Sci Catal 158B:1169–1178

    Article  Google Scholar 

  • Clifford NW, Iyer KS, Raston CL (2008) Encapsulation and controlled release of nutraceuticals using mesoporous silica capsules. J Mater Chem 18:162–165

    Article  Google Scholar 

  • Dejeneka W, Lukasiak J (2003) Determination of total and bioavailable silicon in selected foodstuffs. Food Control 14:193–196

    Article  Google Scholar 

  • Dekkers S, Krystek P, Peters RJ, Lankveld DX, Bokkers BG, van Hoeven-Arentzen PH, Bouwmeester H, Oomen AG (2011) Presence and risks of nanosilica in food products. Nanotoxicology 5:393–405

    Article  Google Scholar 

  • EFSA (2004) Opinion of the scientific panel on dietetic products, nutrition and allergies on a request from the commission related to the Tolerable Upper Intake level of silicon. EFSA J 60:1–11

    Google Scholar 

  • Fruijtier-Polloth C (2012) The toxicological mode of action and the safety of synthetic amorphous silica – a nanostructured material. Toxicology 294:61–79

    Article  Google Scholar 

  • Gitelman HJ, Alderman FR, Perry SJ (1992) Silicon accumulation in dialysis patients. Am J Kidney Dis 19(2):140–143

    Article  Google Scholar 

  • Haidary SM, Corcoles EP, Ali NK (2013) Folic acid delivery device based on porous silicon nanoparticles synthesized by electrochemical etching. Int J Electrochem Sci 8:9956–9966

    Google Scholar 

  • Heirlings L, Siro I et al (2004) Influence of polymer matrix and adsorption onto silica materials on the migration of alpha-tocopherol into 95 % ethanol from active packaging. Food Addit Contam 21:1125–1136

    Article  Google Scholar 

  • Hoffmann F (2005) Fortification basics. USAID & DSM Datasheet, Basel

    Google Scholar 

  • Iler RK (1979) The chemistry of silica. John Wiley & Sons, New York

    Google Scholar 

  • Jugdaosingh R (2007) Silicon and bone health. J Nutr Health Aging 11(2):99–110

    Google Scholar 

  • Jugdaosingh R, Anderson SH, Tucker KL, Elliot H, Kiel DP, Thompson RP, Powell JJ (2002) Dietary silicon intake and absorption. Am J Clin Nutr 75:887–893

    Google Scholar 

  • Jugdaosingh R et al (2004) Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J Bone Miner Res 19:297–307

    Article  Google Scholar 

  • Jugdaosingh R, Sripanyakorn S, Powell JJ (2013a) Silicon absorption and excretion is independent of age and sex in adults. Br J Nutr 110:1024–1030

    Article  Google Scholar 

  • Jugdaosingh R, Anderson SHC, Lakasing L, Sripanyakorn S, Ratcliffe S, Powell JJ (2013b) Serum silicon concentrations in pregnant women and newborn babies. Br J Nutr 110:2004–2010

    Article  Google Scholar 

  • Jurkic LM, Cepanec I, Pavelic SK, Pavelic K (2013) Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid releasing compounds: new perspectives for therapy. Nutr Metab 10:2, 2 pages

    Article  Google Scholar 

  • Katan MB, de Roos NM (2004) Promises and problems of functional foods. Crit Rev Food Sci Nutr 44:369–377

    Article  Google Scholar 

  • Kim KJ, Jeon YJ, Lee JH, Ahn ST, Lee SH, Cho DW, Rhie JW (2010) The effect of silicon ion on proliferation and osteogenic differentiation of human ADSCs. Tissue Engn Regen Med 7(2):171–177

    Google Scholar 

  • Krivak TG, Heimburger SA, Dew JT (1988) Precipitated silica carrier for vitamins. US Patent 4,717,561

    Google Scholar 

  • Loveday SM, Singh H (2008) Recent advances in technologies for vitamin A protection in foods. Trends Food Sci Tech 19:657–668

    Article  Google Scholar 

  • Mojsiewicz-Pienkowska K, Lukasiak J (2003) Analytical fractionation of silicon compounds in foodstuffs. Food Control 14:153–162

    Article  Google Scholar 

  • Morris CA, Calhoon FW, Willis HL (2001) Method of producing vitamin powders. US Patent 6,303,167

    Google Scholar 

  • Pennington JAT (1991) Silicon in foods and diets. Food Addit Contam 8(1):97–118

    Article  Google Scholar 

  • Ponchon JL, Rabute L (1997) Sorbent precipitated silica particulates. US Patent 5,635,214

    Google Scholar 

  • Popplewell JF, King SJ, Day JP, Ackrill P, Fifield LK, Creswell RG, di Tada ML, Liu K (1998) Kinetics of uptake and elimination of silicic acid by a human subject: a novel application of 32Si and accelerator mass spectrometry. J Inorg Biochem 69:177–180

    Article  Google Scholar 

  • Powell JJ, McNaughton SA, Jugdaosingh R et al (2005) A provisional database for the silicon content of foods in the United Kingdom. Br J Nutr 94(5):804–812

    Article  Google Scholar 

  • Prescha A, Zablocka-Slowinska K, Hojka A, Grajeta H (2012) Instant food products as a source of silicon. Food Chem 135:1756–1761

    Article  Google Scholar 

  • Price CT, Koval KJ, Langford JR (2013) Silicon: a review of its potential role in the prevention and treatment of postmenopausal osteoporosis. Int J Endocrinol. doi:10.1155/2013/316783, 6 pages

    Google Scholar 

  • Pruksa S, Siripinyanond A, Powell JJ, Jugdaosingh R (2014) Silicon balance in human volunteers; a pilot study to establish the variance in silicon excretion versus intake. Nutr Metab 11:4, 8 pages

    Article  Google Scholar 

  • Rashidi L, Vasheghani-Farakani E, Rostami K, Gangi F, Fallahpour M (2003) Mesoporous silica nanoparticles as a nanocarrier for delivery of vitamin C. Iran J Biotechnol 11(4):209–213

    Article  Google Scholar 

  • Refitt DM, Jugdaosingh R, Thompson RPH et al (2003) Orthosilicic acid stimulates collagen type I synthesis and osteoblastic differentiation in human osteoblast-like cells in-vitro. Bone 32:127–135

    Article  Google Scholar 

  • Robberecht H, Van Dyck K, Bosscher D, Van Cauwenbergh R (2008) Silicon in foods: content and bioavailability. Int J Food Prop 11:638–645

    Article  Google Scholar 

  • Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau MC, Roberfroid M, Rowland I (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80:S147–S171

    Article  Google Scholar 

  • Schmidt DN, Finnan JL, Lisa RE (1984) Spray-dried vitamin powders using hydrophobic silica. US Patent 4,486,435

    Google Scholar 

  • Schwartz K, Milne DB (1972) Growth promoting effects of silicon in rats. Nature 239:333

    Article  Google Scholar 

  • Schwartz K (1977) Silicon, fibre and atherosclerosis. Lancet 1(8009):454–457

    Article  Google Scholar 

  • Seaborn CD, Nielsen FH (1993) Silicon: a nutritional beneficence for bones, brains and blood vessels ? Nutr Today, July/August pp 13–18

    Google Scholar 

  • Shabir Q, Skaria C, O’Brien H, Loni A, Barnett C, Canham L (2012) Taste and mouthfeel assessment of porous and non-porous silicon microparticles. Nanoscale Res Lett 7:407, 6 pages

    Article  Google Scholar 

  • Siro I, Kapolna E, Kapolna B, Lugasi A (2008) Functional food. Product development, marketing and consumer acceptance- a review. Appetite 51:456–467

    Article  Google Scholar 

  • Sripanyakorn S, Jugdaosingh R, Dissayabutr W, Anderson SHC, Thompson RPH, Powel JJ (2009) The comparative absorption of silicon from different foods and food supplements. Br J Nutr 102(6):825–834

    Article  Google Scholar 

  • Takizawa Y, Hirawasa F, Noritomi E, Aida M, Tsunoda H, Uesugi S (1988) Oral ingestion of Syloid to mice and rats and its chronic toxicity and carcinogenicity. Acta Med Biol 36:27–56

    Google Scholar 

  • Van der Zande M et al (2014) Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol 11(8):1–19

    Google Scholar 

  • Van Dyck K, Van Cauwenbergh R, Robberecht H et al (1999) Bioavailability of silicon from food and food supplements. Fresnius J Anal Chem 363:541–544

    Article  Google Scholar 

  • Van Dyck K, Robberecht H, Van Cauwenbergh R et al (2000) Indication of silicon essentiality in humans. Serum concentration in Belgium children and adults, including pregnant women. Biol Trace Elem Res 77:25–32

    Article  Google Scholar 

  • Villota R, Hawkes JG (1986) Food applications and the toxicological and nutritional implications of amorphous silicon dioxide. Crit Rev Food Sci Nutr 23(4):289–321

    Article  Google Scholar 

  • Wu Z, Jiang Y, Kim T, Lee K (2007) Effects of surface coating on the controlled release of vitamin B1 from mesoporous silica tablets. J Control Release 119:215–221

    Article  Google Scholar 

  • Zhang J, Yua J, Liub S, Yana M, Zanga D, Gaoa L (2012) Controlled release of volatile menthol in nanoporous silica materials. J Incl Phenom Macro Chem 71:593–602

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh Canham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Canham, L. (2014). Porous Silicon and Functional Foods. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_101-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_101-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics