Skip to main content

Pore Volume (Porosity) in Porous Silicon

  • Living reference work entry
  • First Online:
Handbook of Porous Silicon
  • 382 Accesses

Abstract

The porosity (void fraction per unit volume) of silicon has been varied from less than 1 % to as high as 97 % using electrochemical etching of solid silicon with supercritical drying or silica aerogel reduction with supercritical drying. Fifteen techniques are identified for quantifying porosity in specific physical forms, and a conversion table is provided between porosity, pore volume (void content per unit weight), and bulk density in air. Finally ten applications are given which exploit medium to high (25–95 %) porosity, or the ability to vary porosity significantly within a given structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Boarino L, Monticone E, Amato G, Lerondel G, Steni R, Benedetto G, Rossi AM, Lacquanti V, Spagnolo R, Lysenko V, Dittmar A (1999) Design and fabrication of metal bolometers on high porosity silicon layers. Microelectron J 30(11):1149–1154

    Article  Google Scholar 

  • Brumhead D, Canham LT, Seekings DM, Tufton PJ (1993) Gravimetric analysis of pore nucleation and propagation in anodised silicon. Electrochim Acta 38:191–197

    Article  Google Scholar 

  • Bustillo J, Fortineau J, Gautier G, Lethiecq M (2014) Ultrasonic characterization of electrochemically etched porous silicon. Jpn J Appl Phys 53:060308

    Article  Google Scholar 

  • Calo JM, Hall PJ (2004) The application of small angle scattering techniques to porosity characterization in carbons. Carbon 42(7):1299–1304

    Article  Google Scholar 

  • Canham LT (2007) Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology 18:185704 (6 pp)

    Google Scholar 

  • Canham LT (2014) Porous silicon for oral hygiene and cosmetics. In: Handbook of Porous Silicon. Springer International Publishing, Switzerland

    Google Scholar 

  • Canham LT, Cullis AG, Pickering C, Dosser OD, Cox TI, Lynch TP (1994) Luminescent silicon aerocrystal networks prepared by anodisation and supercritical drying. Nature 368:133–135

    Article  Google Scholar 

  • Chakravarty D, Sarada BV, Chandresekhar SB, Saravanan K, Rao TN (2011) A novel method of fabricating porous silicon. Mater Sci Eng A528:7831–7834

    Article  Google Scholar 

  • Chamard V, Bastie P, Le Bolloch D, Dolino G, Elkaim E, Ferraro C, Lauriat JP, Rieutord F, Thiaudiere D (2001) Evidence of pore correlation in porous silicon: an x-ray grazing incidence study. Phys Rev B 64:24516

    Article  Google Scholar 

  • Chen K, Bao Z, Shen J, Wu G, Zhou B, Sandhage KH (2012) Free-standing monolithic silicon aerogels. J Mater Chem 22:16196–16200

    Article  Google Scholar 

  • Chiappini C, Tasciotti E, Fakhoury JR, Fine D, Pullen L, Wang YC, Fu L, Liu X, Ferrari M (2010) Tailored porous silicon microparticles: fabrication and properties. Chem Phys Chem 11(5):1029–1035

    Google Scholar 

  • Cho J (2010) Porous Si anode materials for lithium rechargeable batteries. J Mater Chem 20:4009–4014

    Article  Google Scholar 

  • Coffer JL, Whitehead MA, Nagesha DK, Mukherjee P, Akkaraju G, Totolici M, Saffie RS, Canham LT (2005) Porous silicon based scaffolds for tissue engineering and other biomedical applications. Phys Stat Solidi (a) 202:1451–1455

    Article  Google Scholar 

  • de Boor J, Kim DS, Ao X, Becker M, Hinsche NF, Mertig I, Zahn P, Schmidt V (2012) Thermoelectric properties of porous silicon. Appl Phys A. doi:10.1007/s00339-012-6879-5

    Google Scholar 

  • Deloiuse LA, Miller BA (2004) Quantitative assessment of enzyme immobilization capacity in porous silicon. Anal Chem 76(23):6915–6920

    Article  Google Scholar 

  • Foss SE, Kan PYY, Finstad TG (2005) Single beam determination of porosity and etch rate in situ during etching of porous silicon. J Appl Phys 97:114909

    Article  Google Scholar 

  • Ge M, Rong J, Fang X, Zhou C (2012) Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett 12(5):2318–2323

    Article  Google Scholar 

  • Gelloz B, Kojima A, Koshida N (2005) Highly efficient and stable luminescence of nanocrystalline porous silicon treated by high pressure water vapour annealing. Appl Phys Lett 87:031107

    Article  Google Scholar 

  • Gharbi A, Remaki B, Halimaoui A, Bensahel D, Souifi A (2012) High density oxidized porous silicon. Semicond Sci Technol 27:105017

    Article  Google Scholar 

  • Goudeau P, Naudon A, Bomchil G, Herino R (1989) X ray small angle scattering of porous silicon layers. J Appl Phys 66(2):625–628

    Article  Google Scholar 

  • Groen JC, Peffer LAA, Perez-Ramirez J (2003) Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater 60:1–17

    Article  Google Scholar 

  • Herino R, Bomchil G, Barla K, Bertrand C, Ginoux JL (1987) Porosity and pore size distributions of porous silicon layers. J Electrochem Soc 134:1994–2000

    Article  Google Scholar 

  • Kadar G, Vazsonyi E, Borbely S, Kali G (2000) Small angle neutron scattering in p+ doped porous silicon. J Porous Mater 7(1–3):331–334

    Article  Google Scholar 

  • Khokhlov AG, Valiullin RR, Stepovich MA, Karger J (2008) Characterization of pore size distribution in porous silicon by NMR cryoporosimetry and adsorption methods. Colloid J 70(4):507–514

    Article  Google Scholar 

  • Landry MR (2005) Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim Acta 433:27–50

    Article  Google Scholar 

  • Lee C, Koker L, Kolasinski KW (2000) A novel optical technique for the estimation of porosity in porous silicon thin films. Appl Phys A 71:77–82

    Article  Google Scholar 

  • Lowell S, Shields JE (1991) Chapter 18. Gravimetric method. In: Powder surface area and porosity, 3rd edn. Chapman & Hall

    Google Scholar 

  • Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterisation of porous solids and powders: surface area, porosity and density. Springer, Switzerland

    Google Scholar 

  • Ludurczak W, Garel O, Berthoumieu Y, Babot O, Donias M, Dufour-Gergam E, Niang F, Pellet C, Toupance T, Verjus F (2009) Image processing for the characterization of porous silicon nanostructure. Phys Stat Solidi C6(7):1675–1679

    Article  Google Scholar 

  • Maehara T, Yonamine A, Sonegawa T, Itoh N (2000) Measurement of porosity of porous silicon using x-ray refraction effect. Jpn J Appl Phys 39:3649–3656

    Article  Google Scholar 

  • Mazumder S, Sen D, Sastry PUM, Chitra R, Sequeira A, Chandrasekaran KS (1998) Small angle x-ray scattering of porous silicon at two different wavelengths. J Phys Condens Mater 10(44):9969–9974

    Article  Google Scholar 

  • McDaniel MP, Hottovy TD (1980) Total porosity of high pore volume silicas by liquid adsorption. J Colloid Interf Sci 78(1):31–36

    Article  Google Scholar 

  • Mitchell J, Webber JBW, Strange JH (2008) Nuclear magnetic resonance cryoporometry. Phys Reports 461(1):1–36

    Article  Google Scholar 

  • Muller F, Birner A, Gosele U, Lehmann V, Ottow S, Foll H (2000) Structuring of macroporous silicon for applications as photonic crystals. J Porous Mater 7:201–204

    Article  Google Scholar 

  • Nassiopoulu AG, Kaltsas G (2000) Porous silicon as an effective material for thermal isolation on bulk crystalline silicon. Phys Stat Solidi (a) 182:307

    Article  Google Scholar 

  • Nava R, de la More MB, Taguena-Martinez J, del Rio JA (2009) Refractive index contrast in porous silicon multilayers. Phys Stat Solidi C6:1721–1724

    Article  Google Scholar 

  • Pettersson L, Hultman L, Arwin H (1998) Porosity depth profiling of thin porous silicon layers by variable angle spectroscopic ellipsometry: a porosity graded layer model. Appl Optics 37(19):4130–4136

    Article  Google Scholar 

  • Plain J, Jaffiol R, Lerondel G, Royer P (2007) Porous surface statistical characterization via fluorescence correlation spectroscopy. Phys Stat solidi (a) 204:1507–1511

    Article  Google Scholar 

  • Qu Y, Zhong X, Li Y, Huang Y, Duan X (2010) Photocatalytic properties of porous silicon nanowires. J Mater Chem 20:3590–3594

    Article  Google Scholar 

  • Renaud G, Lazzari R, Leroy F (2009) Probing surface and interface morphology using grazing incidence small angle x-ray scattering. Surf Sci Reports 64:255–380

    Article  Google Scholar 

  • Riikonen J, Salonen J, Lehto VP (2011) Utilising thermoporometry to gain insights into nanostructured materials. J Thermal Anal Calorim 105(3):811–821

    Article  Google Scholar 

  • Rouquerol J, Baron G, Denoyel R, Giesche H, Groen J, Klobes P, Levitz P, Neimark AV, Rigby S, Skudas R, Sing K, Thommes M, Unger K (2012) Liquid intrusion and alternative methods for the characterization of macroporous materials. Pure Appl Chem 84(1):107–136

    Google Scholar 

  • Salonen J, Paski J, Vaha-Heikkilia K, Heikkilia T, Bjorkqvist M, Lehto VP (2005) Determination of drug load in porous silicon microparticles by calorimetry. Phys Stat Solidi (a) 202:1629–1633

    Article  Google Scholar 

  • Schafer DW, Keefer KD (1986) Structure of random porous materials: silica aerogel. Phys Rev Lett 56:2199–2202

    Article  Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

    Article  Google Scholar 

  • Stevens SM, Jansson K, Xiao C, Asahina S, Klingstedt M, Gruner D, Sakamoto Y, Miyasaka K, Cubillas P, Brent R, Han L, Che S, Ryoo R, Zhao D, Anderson M, Schuth F, Terasaki O (2009) An appraisal of high resolution scanning electron microscopy applied to porous materials. JEOL News 44(1):17–22

    Google Scholar 

  • Sun W, Puzas JE, Sen TJ, Fauchet PM (2007) Porous silicon as a cell interface for bone tissue engineering. Phys Stat Solidi (a) 204:1429–1433

    Article  Google Scholar 

  • Tang J, Wang HT, Lee DH, Fardy M, Huo Z, Russell TP, Yang P (2010) Holey silicon as an efficient thermoelectric material. Nano Lett 10:4279–4283

    Article  Google Scholar 

  • Terheiden B, Hensen J, Wolf A, Horbelt R, Plagwitz H, Brendel R (2011) Layer transfer from chemically etched 150 mm porous Si substrates. Materials 4:941–952

    Article  Google Scholar 

  • Tompkins HG, Irene EA (2005) Handbook of ellipsometry. William Andrew/Springer, New York/Heidelberg

    Google Scholar 

  • Torres-Costa V, Paszti F, Climent-Font A, Martin-Palma RJ, Martinez-Duart JM (2005) Porosity profile determination of porous silicon interference filters by RBS. Phys Stat Solidi (c) 2:3208–3212

    Article  Google Scholar 

  • Wu H, Chan G, Choi JW, Ryu III, Yao Y, McDowell MT, Lee SW, Jackson A, Yuang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol. doi:10.1038/NNANO.2012.35

    Google Scholar 

  • Yonehara T, Sakaguchi K, Sato N (1994) Epitaxial layer transfer by bond and etch back of porous silicon. Appl Phys Lett 64:2108–2110

    Article  Google Scholar 

  • Zharkii SM, Karabutov AA, Pelivanov IM, Podymova NB, Timoshenko VY (2003) Laser ultrasonic study of porous silicon layers. Semiconductors 37(4):468–472

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh Canham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Canham, L. (2014). Pore Volume (Porosity) in Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics