Skip to main content

Color of Porous Silicon

  • Living reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

The visual color of a material is often not important for many applications but can be crucial for those that involve consumer acceptance and branded products. Solid silicon is gray, but porous silicon can have varied colors depending on its physical form and pore contents. Silicon chip-based layers can exhibit vivid colors, tunable across the visible spectrum through their lowered refractive index and optical interference with the underlying bulk silicon. Highly columnar morphologies, referred to as “black silicon,” include highly porous forms. Even white silicon is possible via photonic crystals. Polydisperse mesoporous silicon microparticle powders are typically dark brown through light tan, depending on bandgap widening, particle size, and the level of oxidation, which is useful for matching skin tone in cosmetic products, but disadvantageous with various foodstuffs, beverages, and oral care products. The color of such powders can be better tuned chemically by the impregnation of specific food nutrients that themselves have vivid colors. Some such natural pigments can themselves benefit with improved fading resistance as a result of UV protection via oxidized porous silicon impregnation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ao X, Tong X, Kim DS, Zhang L, Knez M, Muller F, He S, Schmidt V (2012) Black silicon with controllable macropore array for enhanced photoelectrochemical performance. Appl Phys Lett 101:111–901

    Article  Google Scholar 

  • Archer RJ (1960) Stain films on silicon. J Phys Chem Solid 14:104–110

    Article  Google Scholar 

  • Bjorklund RB, Zangooie S, Arwin H (1996) Colour changes in thin porous silicon films caused by vapor exposure. Appl Phys Lett 69(20):3001

    Google Scholar 

  • Bonanno LM, DeLoiuse LA (2010) Integration of a chemically responsive hydrogel into a porous silicon photonic sensor for visual colorimetric readout. Adv Funct Mater 20(4):573–578

    Article  Google Scholar 

  • Branz HM, Yost VE, Ward S, Jones KM, To B, Stradins P (2009) Nanostructured black silicon and the optical reflectance of graded-density surfaces. Appl Phys Lett 94:231121

    Article  Google Scholar 

  • Canham LT (1993) The silicon chameleon. Nature 365:695. doi:10.1038/365695a0

    Article  Google Scholar 

  • Canham LT (2007) Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology 18:185704, 6 pages

    Article  Google Scholar 

  • Canham LT, Aston R (2012) Method of protecting skin from UV radiation using a dermatological composition having porous silicon. US Patent 8128912 B2

    Google Scholar 

  • Canham LT, Loni A, Godfrey A (2010) Colouring techniques. International Patent WO/2010/038065

    Google Scholar 

  • Cao L, Fan P, Barnard ES, Brown AM, Brongersma ML (2010) Tuning the colour of silicon nanostructures. Nano Lett 10(7):2649–2654

    Article  Google Scholar 

  • Chen T, Si J, Hou X, Kanehira S, Miura K, Hirao K (2011) Luminescence of black silicon fabricated by high-repetition rate femtosecond laser pulses. J Appl Phys 100:073–106

    Google Scholar 

  • Doan V, Sailor MJ (1992) Luminescent color image generation on porous silicon. Science 256(5065):1791–1792

    Article  Google Scholar 

  • Dorrer C, Ruhe J (2007) Wetting of silicon nanograss: from superhydrophilic to superhydrophobic surfaces. Adv Mater 20(1):159–163

    Article  Google Scholar 

  • Fenollosa R, Ramiro-Manzano F, Tymczenko M, Meseguer F (2010) Porous silicon microspheres: synthesis, characterization and application to photonic microcavities. J Mater Chem 20:5210–5214

    Article  Google Scholar 

  • Gervinskas G et al (2013) Surface-enhanced Raman scattering sensing on black silicon. Ann Phys 525(12):907–914

    Article  Google Scholar 

  • Her TH, Finlay RJ, Wu C, Deliwala S, Mazur E (1998) Microstructuring of silicon with femtosecond laser pulses. Appl Phys Lett 73:1673

    Article  Google Scholar 

  • Iles PA, Coppen PJ (1958) On the delineation of p-n junctions in silicon. J Appl Phys 29:1514

    Article  Google Scholar 

  • Ivanova EP et al (2013) Bactericidal activity of black silicon. Nat Commun 4:2838, 7 pages

    Article  Google Scholar 

  • Jansen H, De Boer M, Legtenberg R, Elwenspoek M (1995) The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control. J Micromech Microeng 5:115–120

    Article  Google Scholar 

  • Koltun MM (1964) Nature of film on surface of silicon photocell during anodic etching. Russ J Phys Chem 38(3):381–383

    Google Scholar 

  • Koynov S, Brandt MS, Stutzmann M (2006) Black non-reflecting silicon surface for solar cells. Appl Phys Lett 88:203107

    Article  Google Scholar 

  • Koynov S, Brandt MS, Stutzmann M (2011) Black thin film silicon. J Appl Phys 110:043–537

    Article  Google Scholar 

  • Kuznetsov AI, Miroshnichenko AE, Fu YH, Zhang J-B, Luk’yanchuk B (2012) Magnetic light. Sci Rep 2:492

    Article  Google Scholar 

  • Lazarouk S, Jaguiro P, Katsouba S, Maiello G, La Monica S, Masini G, Proverbio E, Farrari A (1997) Visual determination of thickness and porosity of porous silicon layers. Thin Solid Films 297:97–101

    Article  Google Scholar 

  • Lublow M, Kubala S, Veyan J-F, Chabal YJ (2012) Colored porous silicon as support for Plasmonic nanoparticles. J Appl Phys 111:084–302

    Article  Google Scholar 

  • Ma LL, Zhou YC, Jiang N, Lu X, Shao J, Lu W, Ge J, Ding XM, Hou XY (2006) Wide-band “black silicon” based on porous silicon. Appl Phys Lett 88:171–907

    Google Scholar 

  • Mangaiyarkarasi D, Breese MBH, Ow YS (2008) Fabrication of three dimensional porous silicon distribution Bragg reflectors. Appl Phys Lett 93:221–905

    Article  Google Scholar 

  • Oh J, Yuan HC, Branz HM (2012) An 18.2 % efficient black silicon solar cell achieved through control of carrier recombination in nanostructures. Nat Nanotechnol 7:743–748

    Article  Google Scholar 

  • Pacholski C (2013) Photonic crystal sensors based on porous silicon. Sensors 13:4694–4713

    Article  Google Scholar 

  • Pavlikov AV, Lartsev AV, Gayduchenko IA, Timoshenko VY (2012) Optical properties of materials based on oxidized porous silicon and their applications for UV protection. Microelectron Eng 90:96–98

    Article  Google Scholar 

  • Robbins H (1962) Junction delineation in silicon. J Electrochem Soc 109(1):63–64

    Article  Google Scholar 

  • Roumanie M et al (2008) Enhancing surface activity in silicon microreactors: use of black silicon and alumina as catalyst supports for chemical and biological applications. Chem Eng J 135:S317–S326

    Article  Google Scholar 

  • Sailor MJ (2012) Chapter 5.3 Optical reflectance measurements. In: Porous silicon in practice. Wiley VCH, Weinheim

    Google Scholar 

  • Seo K, Wober M, Steinvurzel P, Schonbrun E, Dan Y, Ellenbogen T, Crozier KB (2011) Multicolored vertical silicon nanowires. Nano Lett 11:1851–1856

    Article  Google Scholar 

  • Su Y et al (2013) High responsivity MSM black silicon photodetector. Mater Sci Semicon Proc 16(3):619–624

    Article  Google Scholar 

  • Turner DR (1958) Electropolishing silicon in hydrofluoric acid solutions. J Electrochem Soc 105(7):402–408

    Article  Google Scholar 

  • Uhlir A (1956) Electrolytic shaping of germanium and silicon. Bell Sys Tech J 35:333–347

    Article  Google Scholar 

  • Wang H, Zhang KQ (2013) Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 13:4192–4213

    Article  Google Scholar 

  • Wehrspoon RB, Schilling J (2003) A model system for photonic crystals: macroporous silicon. Phys Stat Solidi A 197(3):673–687

    Article  Google Scholar 

  • Whoriskey PJ (1958) Two chemical stains for making p-n junctions in silicon. J Appl Phys 29:867

    Article  Google Scholar 

  • Xu J, Gao Z (2013) Biomimetic photonic structures with tunable structural colors. J Colloid Interface Sci 406:1–17

    Article  Google Scholar 

  • Yuan HC, Yost VE, Page MR, Stradins P, Meier DL, Branz HM (2009) Efficient black silicon solar cell with a density graded nanoporous surface: optical properties, performance limitations and design rules. Appl Phys Lett 95:123501, 3 pages

    Article  Google Scholar 

  • Zhang T, Zhang P, Li S, Li W, Wu Z, Jiang Y (2013) Black silicon with self-cleaning surface prepared by wetting process. Nanoscale Res Lett 8:351, 5 pages

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh Canham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Canham, L. (2014). Color of Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics