Skip to main content

Fast Discrete Fourier Transform on Generalized Sparse Grids

  • Conference paper
  • First Online:
Sparse Grids and Applications - Munich 2012

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 97))

Abstract

In this paper, we present an algorithm for trigonometric interpolation of multivariate functions on generalized sparse grids and study its application for the approximation of functions in periodic Sobolev spaces of dominating mixed smoothness. In particular, we derive estimates for the error and the cost. We construct interpolants with a computational cost complexity which is substantially lower than for the standard full grid case. The associated generalized sparse grid interpolants have the same approximation order as the standard full grid interpolants, provided that certain additional regularity assumptions on the considered functions are fulfilled. Numerical results validate our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Adams, Sobolev Spaces (Academic, London, 1975)

    MATH  Google Scholar 

  2. V. Barthelmann, E. Novak, K. Ritter, High dimensional polynomial interpolation on sparse grids. Adv. Comput. Math. 12, 273–288 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Baszenski, F. Delvos, A discrete Fourier transform scheme for Boolean sums of trigonometric operators. Int. Ser. Numer. Math. 90, 15–24 (1989)

    MathSciNet  Google Scholar 

  4. R. Bellmann, Adaptive Control Processes: A Guided Tour (Princeton University Press, Princeton, 1961)

    Google Scholar 

  5. B. Bohn, M. Griebel, An adaptive sparse grid approach for time series predictions, in Sparse Grids and Applications, ed. by J. Garcke, M. Griebel. Lecture Notes in Computational Science and Engineering, vol. 88 (Springer, Berlin, 2012), pp. 1–30

    Google Scholar 

  6. H. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 1–123 (2004)

    Article  MathSciNet  Google Scholar 

  7. D. Dũng, Best multivariate approximations by trigonometric polynomials with frequencies from hyperbolic crosses. J. Approx. Theory 91(2), 205–225 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Dũng, Sampling recovery and cubature on sparse grids. ArXiv e-prints, 2012. arXiv:1211.4319v1 [math.NA]

    Google Scholar 

  9. D. Dũng, T. Ullrich, N-widths and \(\varepsilon\)-dimensions for high-dimensional approximations. Found. Comput. Math. 13, 965–1003 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Efron, C. Stein, The Jackknife estimate of variance. Ann. Stat. 9(3), 586–596 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Feuersänger, Sparse grid methods for higher dimensional approximation. Dissertation, Institute for Numerical Simulation, University of Bonn, 2010

    Google Scholar 

  12. C. Feuersänger, M. Griebel, Principal manifold learning by sparse grids. Computing 85(4), 267–299 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Garcke, Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen Gittern. Dissertation, Institute for Numerical Simulation, University of Bonn, 2004

    Google Scholar 

  14. T. Gerstner, M. Griebel, Dimension-adaptive tensor-product quadrature. Computing 71(1), 65–87 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. V. Gradinaru, Fourier transform on sparse grids: code design and the time dependent Schrödinger equation. Computing 80, 1–22 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Griebel, Sparse grids and related approximation schemes for higher dimensional problems, in Foundations of Computational Mathematics (FoCM05), Santander, ed. by L. Pardo, A. Pinkus, E. Suli, M. Todd (Cambridge University Press, Cambridge, 2006), pp. 106–161

    Google Scholar 

  17. M. Griebel, J. Hamaekers, A wavelet based sparse grid method for the electronic Schrödinger equation, in Proceedings of the International Congress of Mathematicians, Madrid, 22–30 August, vol. III, ed. by M. Sanz-Solé, J. Soria, J. Varona, J. Verdera (European Mathematical Society, Switzerland, 2006)

    Google Scholar 

  18. M. Griebel, J. Hamaekers, Sparse grids for the Schrödinger equation. Math. Model. Numer. Anal. 41(2), 215–247 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Griebel, J. Hamaekers, Tensor product multiscale many-particle spaces with finite-order weights for the electronic Schrödinger equation. Z. Phys. Chem. 224, 527–543 (2010)

    Article  Google Scholar 

  20. M. Griebel, H. Harbrecht, A note on the construction of L-fold sparse tensor product spaces. Constr. Approx. 38(2), 235–251 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Griebel, H. Harbrecht, On the construction of sparse tensor product spaces. Math. Comput. 82(268), 975–994 (2013)

    MATH  MathSciNet  Google Scholar 

  22. M. Griebel, M. Holtz, Dimension-wise integration of high-dimensional functions with applications to finance. J. Complex. 26, 455–489 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. M. Griebel, S. Knapek, Optimized tensor-product approximation spaces. Constr. Approx. 16(4), 525–540 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Griebel, S. Knapek, Optimized general sparse grid approximation spaces for operator equations. Math. Comput. 78, 2223–2257 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. M. Griebel, P. Oswald, T. Schiekofer, Sparse grids for boundary integral equations. Numer. Math. 83(2), 279–312 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. K. Hallatschek, Fourier-transform on sparse grids with hierarchical bases. Numer. Math. 63(1), 83–97 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. J. Hamaekers, Sparse Grids for the Electronic Schrödinger Equation: Construction and Application of Sparse Tensor Product Multiscale Many-Particle Spaces with Finite-Order Weights for Schrödinger’s Equation (Südwestdeutscher Verlag für Hochschulschriften, Saarbrücken, 2010)

    Google Scholar 

  28. D. Haroske, H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations (European Mathematical Society, Zurich, 2007)

    Book  Google Scholar 

  29. J. Jakeman, S. Roberts, Local and dimension adaptive sparse grid interpolation and quadrature. ArXiv e-prints, 2011. arXiv:1110.0010v1 [math.NA]

    Google Scholar 

  30. Y. Jiang, Y. Xu, Fast discrete algorithms for sparse Fourier expansions of high dimensional functions. J. Complex. 26(1), 51–81 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. L. Kämmerer, S. Kunis, On the stability of the hyperbolic cross discrete Fourier transform. Numer. Math. 117, 581–600 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. L. Kämmerer, S. Kunis, D. Potts, Interpolation lattices for hyperbolic cross trigonometric polynomials. J. Complex. 28(1), 76–92 (2012)

    Article  MATH  Google Scholar 

  33. A. Klimke, B. Wohlmuth, Algorithm 847: spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB. ACM Trans. Math. Softw. 31(4), 561–579 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. S. Knapek, Approximation und Kompression mit Tensorprodukt-Multiskalenräumen. Dissertation, University of Bonn, 2000

    Google Scholar 

  35. S. Knapek, Hyperbolic cross approximation of integral operators with smooth kernel. Technical Report 665, SFB 256, University of Bonn, 2000

    Google Scholar 

  36. F. Kupka, Sparse grid spectral methods for the numerical solution of partial differential equations with periodic boundary conditions. Ph.D. thesis, University of Wien, 1997

    Google Scholar 

  37. F. Kupka, Sparse grid spectral methods and some results from approximation theory, in Proceedings of the 11th International Conference on Domain Decomposition Methods in Greenwich, England, ed. by C. Lai, P. Bjørstad, M. Cross, O. Widlund, 1999, pp. 57–64

    Google Scholar 

  38. O. Le Maître, O. Knio, Spectral Methods for Uncertainty Quantification. Scientific Computation, vol. XVI (Springer, Berlin, 2010)

    Google Scholar 

  39. X. Ma, N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228(8), 3084–3113 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  40. J. Pasciak, Spectral and pseudospectral methods for advection equations. Math. Comput. 35, 1081–1092 (1980)

    MATH  MathSciNet  Google Scholar 

  41. H. Schmeisser, W. Sickel, Spaces of functions of mixed smoothness and approximation from hyperbolic crosses. J. Approx. Theory 128(2), 115–150 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  42. H. Schmeisser, H. Triebel, Fourier Analysis and Functions Spaces (Wiley, London, 1987)

    Google Scholar 

  43. J. Shen, L. Wang, Sparse spectral approximations of high-dimensional problems based on hyperbolic cross. SIAM J. Numer. Anal. 48(3), 1087–1109 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  44. W. Sickel, F. Sprengel, Interpolation on sparse grids and tensor products of Nikol’skij-Besov spaces. J. Comput. Anal. Appl. 1, 263–288 (1999)

    MATH  MathSciNet  Google Scholar 

  45. W. Sickel, T. Ullrich, Tensor products of Sobolev–Besov spaces and applications to approximation from the hyperbolic cross. J. Approx. Theory 161(2), 748–786 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  46. I. Sloan, X. Wang, H. Woźniakowski, Finite-order weights imply tractability of multivariate integration. J. Complex. 20(1), 46–74 (2004)

    Article  MATH  Google Scholar 

  47. S. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math. Dokl. 4, 240–243 (1963) [Russian original in Dokl. Akad. Nauk SSSR 148, 1042–1045 (1963)]

    Google Scholar 

  48. V. Temlyakov, Approximation of Periodic Functions (Nova Science, New York, 1993)

    MATH  Google Scholar 

  49. T. von Petersdorff, C. Schwab, Numerical solution of parabolic equations in high dimensions. Math. Model. Numer. Anal. 38, 93–127 (2004)

    Article  MATH  Google Scholar 

  50. G. Wasilkowski, H. Woźniakowski, Finite-order weights imply tractability of linear multivariate problems. J. Approx. Theory 130(1), 57–77 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  51. A. Werschulz, H. Woźniakowski, Tractability of quasilinear problems I: general results. J. Approx. Theory 145(2), 266–285 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Collaborative Research Centre 1060 of the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hamaekers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Griebel, M., Hamaekers, J. (2014). Fast Discrete Fourier Transform on Generalized Sparse Grids. In: Garcke, J., Pflüger, D. (eds) Sparse Grids and Applications - Munich 2012. Lecture Notes in Computational Science and Engineering, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-319-04537-5_4

Download citation

Publish with us

Policies and ethics