Skip to main content

Introduction to Pattern Recognition and Bioinformatics

  • Chapter
  • First Online:
Scalable Pattern Recognition Algorithms
  • 1481 Accesses

Abstract

With the gaining of knowledge in different branches of biology such as molecular biology, structural biology, and biochemistry, and the advancement of technologies lead to the generation of biological data at a phenomenal rate [286].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adrahams JP, Breg M (2000) Prediction of RNA secondary structure including pseudoknoting by computer simulation. Nucl Acids Res 18:3035–3044

    Google Scholar 

  2. Agarwal CC, Procopiuc C, Wolf J, Yu PS, Park JS (1999) Fast algorithms for projected clustering. In: Proceedings of the ACM-SIGMOD international conference on management of data, Philadelphia, USA, pp 61–72

    Google Scholar 

  3. Agrawal R, Gehrke J, Gunopulos D, Raghavan P (1998) Automatic subspace clustering of high dimensional data for data mining applications. In: Proceedings of the ACM-SIGMOD international conference on management of data, Seattle, WA, pp 94–105

    Google Scholar 

  4. Aho AV, Corasick M (1975) Efficient string matching: an aid to bibliographic search. Commun ACM 18(6):333–340

    MATH  MathSciNet  Google Scholar 

  5. Akutsu T, Miyano S, Kuhara S (1999) Identification of genetic networks from a small number of gene expression patterns under the boolean network model. Proc Pac Symp Biocomput 99:17–28

    Google Scholar 

  6. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceed Natl Acad Sci USA 96(12):6745–6750

    Google Scholar 

  7. Altschul SF, Gish W, Miller W, Myers E, Lipman DJ (1990) Basic local alignment search tool. Journal Mol Biol 215:403–410

    Google Scholar 

  8. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25(17):3389–3402

    Google Scholar 

  9. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005) Clustering and conservation patterns of human microRNAs. Nucl Acids Res 33:2697–2706

    Google Scholar 

  10. Ananthanarayana VS, Murty MN, Subramanian DK (2003) Tree structure for efficient data mining using rough sets. Patt Recogn Lett 24(6):851–862

    MATH  Google Scholar 

  11. Ang KK, Quek C (2006) Stock trading using RSPOP: a novel rough set-based neuro-fuzzy approach. IEEE Trans Neural Netw 17(5):1301–1315

    Google Scholar 

  12. Ansari HR, Raghava GP (2010) Identification of NAD interacting residues in proteins. BMC Bioinform 11:160

    Google Scholar 

  13. Arrigo P, Giuliano F, Damiani G (1991) Identification of a new motif on nucleic acid sequence data using Kohonen’s self-organising map. Comput Appl Biosci 7(3):353–357

    Google Scholar 

  14. Ascia G, Catania V, Panno D (2006) An integrated fuzzy-GA approach for buffer management. IEEE Trans Fuzzy Syst 14(4):528–541

    Google Scholar 

  15. Asharaf S, Shevade SK, Murty MN (2005) Rough support vector clustering. Patt Recogn 38:1779–1783

    MATH  Google Scholar 

  16. Au WH, Chan KCC (1998) An effective algorithm for discovering fuzzy rules in relational databases. In: Proceedings of the IEEE international conference on fuzzy systems, pp 1314–1319

    Google Scholar 

  17. Au WH, Chan KCC, Wong AKC, Wang Y (2005) Attribute clustering for grouping, selection, and classification of gene expression data. IEEE/ACM Trans Comput Biol Bioinform 2(2):83–101

    Google Scholar 

  18. Badaloni S, Falda M, Massignan P, Sambo F (2009) Fuzzy mutual information for reverse engineering of gene regulatory networks. In: Proceedings of the international conference on fuzzy calculus, pp 25–30

    Google Scholar 

  19. Baldi P, Baisnee PF (2000) Sequence analysis by additive scales: DNA structure for sequences and repeats of all lengths. Bioinformatics 16:865–889

    Google Scholar 

  20. Baldi P, Brunak S (1998) Bioinformatics: The machine learning approach. MIT Press, Cambridge

    Google Scholar 

  21. Bandyopadhyay S (2005) An efficient technique for superfamily classification of amino acid sequences: feature extraction, fuzzy clustering and prototype selection. Fuzzy Sets Syst 152:5–16

    MATH  Google Scholar 

  22. Bandyopadhyay S, Pal SK (2007) Classification and learning using genetic algorithms: applications in bioinformatics and web intelligence. Springer, Heidelberg

    Google Scholar 

  23. Banerjee M, Kundu MK, Maji P (2009) Content-based image retrieval using visually significant point features. Fuzzy Sets Syst 160(23):3323–3341

    MathSciNet  Google Scholar 

  24. Banerjee M, Mitra S, Pal SK (1998) Rough-fuzzy MLP: knowledge encoding and classification. IEEE Trans Neural Netw 9(6):1203–1216

    Google Scholar 

  25. Bargaje R, Hariharan M, Scaria V, Pillai B (2010) Consensus miRNA expression profiles derived from interplatform normalization of microarray data. RNA 16:16–25

    Google Scholar 

  26. Bargiela A, Pedrycz W (2003) Granular computing: an introduction. Kluwer Academic Publishers, Boston

    Google Scholar 

  27. Bargiela A, Pedrycz W (2008) Toward a theory of granular computing for human-centered information processing. IEEE Trans Fuzzy Syst 16(2):320–330

    Google Scholar 

  28. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247

    Google Scholar 

  29. Batenburg V, Gultyaev AP, Pleij CWA (1995) An APL-programmed genetic algorithm for the prediction of RNA secondary structure. J Theor Biol 174(3):269–280

    Google Scholar 

  30. Baya A, Granitto P (2011) Clustering gene expression data with a penalized graph-based metric. BMC Bioinform 12(1)

    Google Scholar 

  31. Bayley MJ, Jones G, Willett P, Williamson MP (1998) GENFOLD: a genetic algorithm for folding protein structures using NMR restraints. Protein Sci 7(2):491–499

    Google Scholar 

  32. Bazan JG, Skowron A, Synak P (1994) Discovery of decision rules from experimental data. In: Proceedings of the 3rd workshop on rough sets and soft computing, pp 526–533

    Google Scholar 

  33. Belacel N, Cuperlovic-Culf M, Laflamme M, Ouellette R (2004) Fuzzy J-means and VNS methods for clustering genes from microarray data. Bioinformatics 20(11):1690–1701

    Google Scholar 

  34. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159

    Google Scholar 

  35. Ben-Dor A, Bruhn L, Friedman N, Nachman I, Schummer M, Yakhini Z (2000) Tissue classification with gene expression profiles. J Comput Biol 7(3/4):559–584

    Google Scholar 

  36. Ben-Dor A, Shamir R, Yakhini Z (1999) Clustering gene expression patterns. J Comput Biol 6(3–4):281–297

    Google Scholar 

  37. Bengio Y, Buhmann JM, Embrechts M, Zurada JM (2000) Introduction to the special issue on neural networks for data mining and knowledge discovery. IEEE Trans Neural Netw 11: 545–549

    Google Scholar 

  38. Berry EA, Dalby AR, Yang ZR (2004) Reduced bio-basis function neural network for identification of protein phosphorylation sites: comparison with pattern recognition algorithms. Comput Biol Chem 28(1):75–85

    MATH  Google Scholar 

  39. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithm. Plenum Press, New York

    Google Scholar 

  40. Bezdek JC, Pal SK (1992) Fuzzy models for pattern recognition: methods that search for structures in data. IEEE Press, New York

    Google Scholar 

  41. Bhatia SK, Deogun JS (1998) Conceptual clustering in information retrieval. IEEE Trans Syst Man Cybern Part B: Cybern 28(3):427–436

    Google Scholar 

  42. Bian W, Xue X (2009) Subgradient-based neural networks for nonsmooth nonconvex optimization problems. IEEE Trans Neural Netw 20(6):1024–1038

    Google Scholar 

  43. Bjorvand AT, Komorowski J (1997) Practical applications of genetic algorithms for efficient reduct computation. In: Proceedings of the 15th IMACS world congress on scientific computation, modeling and applied mathematics, vol 4, pp 601–606

    Google Scholar 

  44. Blum AL, Langley P (1997) Selection of relevant features and examples in machine learning. Artif Intell 97:245–271

    MATH  MathSciNet  Google Scholar 

  45. Borg I, Groenen P (1997) Modern multidimensional scaling. Springer, Berlin

    MATH  Google Scholar 

  46. Bornholdt S, Graudenz D (1992) General asymmetric neural networks and structure design by genetic algorithms. Neural Netw 5:327–334

    Google Scholar 

  47. Bosc P, Pivert O, Ughetto L (1999) Database mining for the discovery of extended functional dependencies. In: Proceedings of the 18th international conference of the North American Fuzzy Information Processing Society, IEEE Press, Piscataway, NJ, New York, USA, pp 580–584

    Google Scholar 

  48. Brazma A, Vilo J (2000) Minireview: gene expression data analysis. Fed Eur Biochem Soc Lett 480(1):17–24

    Google Scholar 

  49. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classif Regres Trees. Wadsworth, Belmont

    Google Scholar 

  50. Brintha SJ, Bhuvaneswari V (2012) Clustering microarray gene expression data using type 2 fuzzy logic. In: Proceedings of the 3rd national conference on emerging trends and applications in computer, science, pp 147–151

    Google Scholar 

  51. Bunke H, Kandel A (eds) (2001) Neuro-fuzzy pattern recognition. World Scientific, Singapore

    Google Scholar 

  52. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Mining Knowl Discov 2(2):121–167

    Google Scholar 

  53. Butte A (2002) The use and analysis of microarray data. Nature Rev Drug Discov 1(12):951–960

    Google Scholar 

  54. Cai X, Hagedorn CH, Cullen BR (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966

    Google Scholar 

  55. Cai YD, Chou KC (1998) Artificial neural network model for predicting HIV protease cleavage sites in protein. Adv Eng Softw 29(2):119–128

    Google Scholar 

  56. Cai YD, Liu XJ, Xu XB, Chou KC (2002) Support vector machines for predicting the specificity of galNAc-transferase. Peptides 23:205–208

    Google Scholar 

  57. Cantone I, Marucci L, Iorio F, Ricci MA, Belcastro V, Bansal M, Santini S, di Bernardo M, di Bernardo D, Cosma MP (2009) A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137(1):172–181

    Google Scholar 

  58. Cardoso J (1998) Blind signal separation: statistical principles. Proc IEEE 86:2009–2025

    Google Scholar 

  59. Carpineto C, Romano G (1996) A lattice conceptual clustering system and its application to browsing retrieval. Mach Learn 24(2):95–122

    Google Scholar 

  60. Carpio CAD (1996) A parallel genetic algorithm for polypeptide three dimensional structure prediction: a transputer implementation. J Chem Inform Comput Sci 36(2):258–269

    Google Scholar 

  61. Casillas J, Carse B, Bull L (2007) Fuzzy-XCS: a Michigan genetic fuzzy system. IEEE Trans Fuzzy Syst 15(4):536–550

    Google Scholar 

  62. Chandrashekharan B (1986) From numbers to symbols to knowledge structures: pattern recognition and artificial intelligence perspectives on the classification task, vol 2. Elsevier Science, Amsterdam

    Google Scholar 

  63. Chen C, Wang LH, Kao C, Ouhyoung M, Chen W (1998) Molecular binding in structured-based drug design: a case study of the population-based annealing genetic algorithms. In: Proceedings of the IEEE international conference on tools with, artificial intelligence, pp 328–335

    Google Scholar 

  64. Chen CH, Tseng VS, Hong TP (2008) Cluster-based evaluation in fuzzy-genetic data mining. IEEE Trans Fuzzy Syst 16(1):249–262

    Google Scholar 

  65. Chen H, Yao X (2009) Regularized negative correlation learning for neural network ensembles. IEEE Trans Neural Netw 20(12):1962–1979

    Google Scholar 

  66. Chen L, Jiang Q, Wang S (2012) Model-based method for projective clustering. IEEE Trans Knowl Data Eng 24(7):1291–1305

    MathSciNet  Google Scholar 

  67. Chiang D, Chow LR, Wang Y (2000) Mining time series data by a fuzzy linguistic summary system. Fuzzy Sets Syst 112:419–432

    MATH  Google Scholar 

  68. Chiang JH, Ho SH (2008) A combination of rough-based feature selection and RBF neural network for classification using gene expression data. IEEE Trans NanoBiosci 7(1):91–99

    Google Scholar 

  69. Chou PA (1991) Optimal partitioning for classification and regression trees. IEEE Trans Patt Anal Mach Intell 13(4):340–354

    Google Scholar 

  70. Chou PY, Fasmann GD (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol 47:145–148

    Google Scholar 

  71. Chouchoulas A, Shen Q (2001) Rough set-aided keyword reduction for text categorisation. Appl Artif Intell 15(9):843–873

    Google Scholar 

  72. Comon P (1994) Independent component analysis, a new concept? Signal Process 36(3):287–314

    MATH  Google Scholar 

  73. Contreras-Moreira B, Fitzjohn PW, Offman M, Smith GR, Bates PA (2003) Novel use of genetic algorithm for protein structure prediction: searching template and sequence alignment space. Proteins 53(6):424–429

    Google Scholar 

  74. Cooper L, Corne D, Crabbe M (2003) Use of a novel Hill-climbing genetic algorithm in protein folding simulations. Comput Biol Chem 27(6):575–580

    Google Scholar 

  75. Cornelis C, Jensen R, Martin GH, Slezak D (2010) Attribute selection with fuzzy decision reducts. Inform Sci 180:209–224

    MATH  MathSciNet  Google Scholar 

  76. Cpalka K (2009) A new method for design and reduction of neuro-fuzzy classification systems. IEEE Trans Neural Netw 20(4):701–714

    Google Scholar 

  77. Crollius HR, Jaillon O, Dasilva C, Ozouf-Costaz C, Fizames C, Fischer C, Bouneau L, Billault A, Quetier F, Saurin W, Bernot A, Weissenbach J (2000) Characterization and repeat analysis of the compact genome of the freshwater pufferfish tetraodon nigroviridis. Genome Res 10:939–949

    Google Scholar 

  78. Cun YL, Boser B, Denker JS, Henderson D, Horward RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1:541–551

    Google Scholar 

  79. Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 1:131–156

    Google Scholar 

  80. Dash M, Liu H (2003) Consistency-based search in feature selection. Artif Intell 151:155–176

    MATH  MathSciNet  Google Scholar 

  81. Day WHE, Edelsbrunner H (1984) Efficient algorithms for agglomerative hierarchical clustering methods. J Classif 1(1):7–24

    MATH  Google Scholar 

  82. De SK (2004) A rough set theoretic approach to clustering. Fundam Inform 62(3–4):409–417

    MATH  Google Scholar 

  83. Dembele D, Kastner P (2003) Fuzzy C-means method for clustering microarray data. Bioinformatics 19(8):973–980

    Google Scholar 

  84. Dettling M, Buhlmann P (2002) Supervised clustering of genes. Genome Biol 3(12):1–15

    Google Scholar 

  85. Devijver PA, Kittler J (1982) Pattern recognition: a statistical approach. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  86. Devroye L, Gyorfi L, Lugosi G (1996) A probabilistic theory of pattern recognition. Springer, Berlin

    MATH  Google Scholar 

  87. D’haeseleer P, Wen X, Fuhrman S, Somogyi R (1998) Mining the gene expression matrix: inferring gene relationships from large scale gene expression data. In: Proceedings of the 2nd international workshop on information processing in cell and tissues, pp 203–212

    Google Scholar 

  88. Dimitrakopoulos G, Sgarbas K, Dimitrakopoulou K, Dragomir A, Bezerianos A, Maraziotis IA () Multi-scale modeling of gene regulatory networks via integration of temporal and topological biological data. In: Proceedings of the annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 1242–1245

    Google Scholar 

  89. Ding CHQ, Dubchak I (2001) Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17:349–358

    Google Scholar 

  90. Dong H, Siu H, Luo L, Fang X, Jin L, Xiong M (2010) Investigation gene and microRNA expression in glioblastoma. BMC Genomics 11(Suppl 3):S16

    Google Scholar 

  91. Dubuisson MP, Dubes RC (1994) Efficacy of fractal features in segmenting images of natural textures. Patt Recogn Lett 15:419–431

    Google Scholar 

  92. Duda RO, Hart PE, Stork DG (1999) Pattern classification and scene analysis. Wiley, New York

    Google Scholar 

  93. Dunn JC (1974) A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters. J Cybern 3:32–57

    MathSciNet  Google Scholar 

  94. Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucl Acids Res 30(1):207–210

    Google Scholar 

  95. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95(25):14863–14868

    Google Scholar 

  96. Enerly E, Steinfeld I, Kleivi K, Leivonen SK, Aure MR, Russnes HG, Ronneberg JA, Johnsen H, Navon R, Rodland E, Makela R, Naume B, Perala M, Kallioniemi O, Kristensen VN, Yakhini Z, Dale ALB (2011) miRNA–mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One 6(2)

    Google Scholar 

  97. Ester M, Kriegel HP, Xu X (1995) Knowledge discovery in large spatial databases: focusing techniques for efficient class identification. In: Proceedings of the international symposium on large spatial databases, Portland, ME, pp 67–82

    Google Scholar 

  98. Fang J, Busse JWG (2006) Mining of MicroRNA expression data—a rough set approach. In: Proceedings of the 1st international conference on rough sets and knowledge technology. Springer, Berlin, pp 758–765

    Google Scholar 

  99. Farber R, Lapedes A, Sirotkin K (1992) Determination of eucaryotic protein coding regions using neural networks and information theory. J Mol Biol 226(2):471–479

    Google Scholar 

  100. Feng X, Mouttaki H, Lin L, Huang R, Wu B, Hemme CL, He Z, Zhang B, Hicks LM, Xu J, Zhou J, Tang YJ (2009) Characterization of the central metabolic pathways in thermoanaerobacter sp. strain X514 via isotopomer-assisted metabolite analysis. Appl Environ Microbiol 75(15):5001–5008

    Google Scholar 

  101. Fickett J (1982) Recognition of protein coding regions in DNA sequences. Nucl Acids Res 10(17):5303–5318

    Google Scholar 

  102. Fickett J, Tung CS (1992) Assessment of protein coding measures. Nucl Acids Res 20(24):6441–6450

    Google Scholar 

  103. Fraley C, Raftery AE (1998) How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput J 41(8):578–588

    MATH  Google Scholar 

  104. Friedman JH (1987) Exploratory projection pursuit. J Am Stat Assoc 82(397):249–266

    MATH  Google Scholar 

  105. Frigui H (1999) Adaptive image retrieval using the fuzzy integral. In: Proceedings of the 18th international conference of the North American Fuzzy Information Processing Society, IEEE Press, Piscataway, NJ, New York, pp 575–579

    Google Scholar 

  106. Frigui H, Krishnapuram R (1999) A robust competitive clustering algorithm with applications in computer vision. IEEE Trans Patt Anal Mach Intell 21(5):450–465

    Google Scholar 

  107. Frolov AA, Husek D, Polyakov PY (2009) Recurrent-neural-network-based boolean factor analysis and its application to word clustering. IEEE Trans Neural Netw 20(7):1073–1086

    Google Scholar 

  108. Fu KS (1982) Syntactic pattern recognition and application. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  109. Fukunaga K (1990) Introduction to statistical pattern recognition. Academic Press, New York

    MATH  Google Scholar 

  110. Fukushima K, Miyako S, Ito T (1983) Neocognitron: A Neural Network Model for a Mechanism of Visual Pattern Recognition. IEEE Trans Syst Man Cybern 13:826–834

    Google Scholar 

  111. Gajate A, Haber RE, Vega PI, Alique JR (2010) A transductive neuro-fuzzy controller: application to a drilling process. IEEE Trans Neural Netw 21(7):1158–1167

    Google Scholar 

  112. Garnier J, Gibrat JF, Robson B (1996) GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266:540–553

    Google Scholar 

  113. Gasch AP, Eisen MB (2002) Exploring the conditional coregulation of yeast gene expression through fuzzy K-means clustering. Genome Biol 3(11):1–22

    Google Scholar 

  114. Ghosh D, Chinnaiyan AM (2002) Mixture modelling of gene expression data from microarray experiments. Bioinformatics 18:275–286

    Google Scholar 

  115. Gidas B (1989) A renormalization group approach to image processing letters. IEEE Trans Patt Anal Mach Intell 11(2):164–180

    MATH  Google Scholar 

  116. Giordano V, Naso D, Turchiano B (2006) Combining genetic algorithms and Lyapunov-based adaptation for online design of fuzzy controllers. IEEE Trans Syst Man Cybern Part B: Cybern 36(5):1118–1127

    Google Scholar 

  117. Glover F, Laguna M (1999) Tabu search. Kluwer Academic Publishers, Boston

    Google Scholar 

  118. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading

    MATH  Google Scholar 

  119. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537

    Google Scholar 

  120. Goncalves LB, Vellasco MMBR, Pacheco MAC, de Souza FJ (2006) Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases. IEEE Trans Syst Man Cybern Part C: Appl Rev 36(2):236–248

    Google Scholar 

  121. Greenfield A, Hafemeister C, Bonneau R (2013) Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks. Bioinformatics 29(8):1060–1067

    Google Scholar 

  122. Grzymala-Busse JW (1992) LERS—a system for learning from examples based on rough sets. In: Slowinski R (ed) Intelligent decision support, vol 11. Springer, The Netherlands, pp 3–18

    Google Scholar 

  123. Grzymala-Busse JW (1997) A new version of the rule induction system LERS. Fundam Inform 31(1):27–39

    MATH  Google Scholar 

  124. Guha R, Jurs PC (2004) Development of linear, ensemble, and nonlinear models for the prediction and interpretation of the biological activity of a set of PDGFR inhibitors. J Chem Inform Comput Sci 44:2179–2189

    Google Scholar 

  125. Guha S, Rastogi R, Shim K (1998) CURE: an efficient clustering algorithm for large databases. In: Proceedings of the ACM-SIGMOD international conference on management of data, Seattle, WA, pp 73–84

    Google Scholar 

  126. Guha S, Rastogi R, Shim K (19991) ROCK: a robust clustering algorithm for categorical attributes. In: Proceedings of the international conference on data engineering, Sydney, Australia, pp 512–521

    Google Scholar 

  127. Gultyaev AP, Batenburg V, Pleij CWA (1995) The computer simulation of RNA folding pathways using a genetic algorithm. J Mol Biol 250(1):37–51

    Google Scholar 

  128. Gunn JR (1997) Sampling protein conformations using segment libraries and a genetic algorithm. J Chem Phys 106:4270–4281

    Google Scholar 

  129. Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, Wang Y (2009) Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol 24:652–657

    Google Scholar 

  130. Guyon I (2003) Elisseeff: an introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  131. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422

    MATH  Google Scholar 

  132. Hale J, Shenoi S (1996) Analyzing FD inference in relational databases. Data Knowl Eng 18:167–183

    MATH  Google Scholar 

  133. Hall MA (2000) Correlation-based feature selection for discrete and numeric class machine learning. In: Proceedings of the 17th international conference on machine learning, pp 359–366

    Google Scholar 

  134. Han J, Kamber M (2001) Data mining: concepts and techniques. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  135. Hartuv E, Shamir R (2000) A clustering algorithm based on graph connectivity. Inf Process Lett 76(4–6):175–181

    MATH  MathSciNet  Google Scholar 

  136. Hastie T, Tibshirani R, Botstein D, Brown P (2001) Supervised harvesting of expression trees. Genome Biol 1:1–12

    Google Scholar 

  137. Hawkins T, Chitale M, Luban S, Kihara D (2009) PFP: automated prediction of gene ontology functional annotations with confidence scores using protein sequence da. Proteins 74(3):566–582

    Google Scholar 

  138. Haykin S (1998) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  139. Herrero J, Valencia A, Dopazo J (2001) A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17:126–136

    Google Scholar 

  140. Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation. Santa Fe institute studies in the sciences of complexity. Addison Wesley, New York

    Google Scholar 

  141. Heyer LJ, Kruglyak S, Yooseph S (1999) Exploring expression data: identification and analysis of coexpressed genes. Genome Res 9(11):1106–1115

    Google Scholar 

  142. Hirano S, Tsumoto S (2003) An indiscernibility-based clustering method with iterative refinement of equivalence relations: rough clustering. J Adv Comput Intell Intell Inf 7(2):169–177

    Google Scholar 

  143. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  144. Honda Y, Horiguchi T, Miya M (1997) Restoration of digital images of the alphabet by using Ising models. Phys Lett A 227(5):319–324

    MATH  MathSciNet  Google Scholar 

  145. Hong Y, Kwong S, Wang H, Ren Q, Chang Y (2008) Probabilistic and graphical model based genetic algorithm driven clustering with instance-level constraints. In: Proceedings of IEEE congress on evolutionary computation: IEEE World congress on computational intelligence, pp 322–329

    Google Scholar 

  146. Huang Z (1998) Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining Knowl Discov 2:283–304

    Google Scholar 

  147. Hussain I, Reed T (1995) A bond percolation-based Gibbs-Markov random fields for image segmentation. IEEE Signal Process Lett 2(8):145–147

    Google Scholar 

  148. Hussain I, Reed T (1997) A bond percolation-based model for image segmentation. IEEE Trans Patt Anal Mach Intell 6(12):1698–1704

    Google Scholar 

  149. Hyvarlnen A, Oja R (1997) A fast fixed-point algorithm for independent component analysis. Neural Comput 9(7):1483–1492

    Google Scholar 

  150. Iijima H, Naito Y (1994) Incremental prediction of the side-chain conformation of proteins by a genetic algorithm. In: Proceedings of the 1st IEEE conference on evolutionary computation, IEEE world congress on computational intelligence, vol 1, pp 362–367

    Google Scholar 

  151. Iorio MV, Visone R, Leva GD, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Menard S, Croce CM (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67(18):8699–8707

    Google Scholar 

  152. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  153. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

    Google Scholar 

  154. Jain AN, Koile K, Chapman D (1994) Compass: predicting biological activities from molecular surface properties. performance comparisons on a steroid benchmark. J Med Chem 37:2315–2327

    Google Scholar 

  155. Jensen R, Shen Q (2008) Computational intelligence and feature selection: rough and fuzzy approaches. Wiley-IEEE Press, New York

    Google Scholar 

  156. Jiang D, Pei J, Zhang A (2003) DHC: a density-based hierarchical clustering method for time-series gene expression data. In: Proceedings of the 3rd IEEE international symposium on bioinformatics and bioengineering, pp 393–400

    Google Scholar 

  157. Jiang D, Tang C, Zhang A (2004) Cluster analysis for gene expression data: a survey. IEEE Trans Knowl Data Eng 16(11):1370–1386

    Google Scholar 

  158. Jiang J, Yang D, Wei H (2008) Image segmentation based on rough set theory and neural networks. In: Proceedings of the 5th international conference on visual information, engineering, pp 361–365

    Google Scholar 

  159. John GH, Kohavi R, Pfleger K (1994) Irrelevant features and the subset selection problem. In: Kaufmann M (ed) Proceedings of the 11th international conference on machine learning, New Brunswick, NJ, pp 121–129

    Google Scholar 

  160. Judd D, Mckinley P, Jain AK (1998) Large-scale parallel data clustering. IEEE Trans Patt Anal Mach Intell 20(8):871–876

    Google Scholar 

  161. Kandel A (1982) Fuzzy techniques in pattern recognition. Wiley Interscience, New York

    MATH  Google Scholar 

  162. Karypis G, Han EH, Kumar V (1999) Chameleon: a hierarchical clustering algorithm using dynamic modeling. Computer 32(8):68–75

    Google Scholar 

  163. Katoh K, Kuma K, Miyata T (2001) Genetic algorithm-based maximum likelihood analysis for molecular phylogeny. J Mol Evol 53(4):477–484

    Google Scholar 

  164. Kaufmann L, Rousseeuw PJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

    Google Scholar 

  165. Kerre EE, Nachtegael M (eds) (2010) Fuzzy techniques in image processing. Physica-Verlag, Heidelberg

    Google Scholar 

  166. Khimasia M, Covency P (1997) Protein structure prediction as a hard optimization problem: the genetic algorithm approach. Mol Simul 19:205–226

    Google Scholar 

  167. Kiem H, Phuc D (1999) Using rough genetic and Kohonen’s neural network for conceptual cluster discovery in data mining. In: Proceedings of the 7th international conference on rough sets. Fuzzy sets, data mining, and granular computing, Yamaguchi, Japan, pp 448–452

    Google Scholar 

  168. Killer JM, Chen SS, Crownover RM (1993) On the calculation of fractal features from images. IEEE Trans Patt Anal Mach Intell 15(10):1087–1090

    Google Scholar 

  169. Kirkpatrick S, Gelatt CDJ, Vecchi MP (1983) Optimization by simmulated annealing. Science 220:671–680

    MATH  MathSciNet  Google Scholar 

  170. Klanderman GA, Huttenlocher DP, Rucklidge WJ (1993) Comparing images using the Hausdroff distance. IEEE Trans Patt Anal Mach Intell 15(9):850–863

    Google Scholar 

  171. Knudsen S (1999) Promoter 2.0: for the recognition pol II promoter sequences. Bioinformatics 15:356–361

    Google Scholar 

  172. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324

    MATH  Google Scholar 

  173. Kohonen T (2001) Self-organizing maps. Springer, Berlin

    MATH  Google Scholar 

  174. Konig R, Dandekar T (1999) Improving genetic algorithms for protein folding simulations by systematic crossover. BioSystems 50:17–25

    Google Scholar 

  175. Krasnogor N, Hart WE, Smith J, Pelta DA (1999) Protein structure prediction with evolutionary algorithms. In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M, Smith RE (eds) Proceedings of the international conference on genetic and evolutionary computation, vol 2, pp 1596–1601

    Google Scholar 

  176. Krasnogor N, Pelta D, Lopez PEM, de la Canal E (1998) Genetic algorithms for the protein folding problem: a critical view. In: Fyfe C, Alpaydin E (eds) Proceedings of the engineering of intelligent systems, pp 353–360

    Google Scholar 

  177. Krishnapuram R, Joshi A, Nasraoui O, Yi L (2001) Low complexity fuzzy relational clustering algorithms for web mining. IEEE Trans Fuzzy Syst 9:595–607

    Google Scholar 

  178. Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1(2):98–110

    Google Scholar 

  179. Kuncheva LI (2010) Fuzzy classifier design. Physica-Verlag, Heidelberg

    Google Scholar 

  180. Lee CS, Guo SM, Hsu CY (2005) Genetic-based fuzzy image filter and its application to image processing. IEEE Trans Syst Man Cybern Part B: Cybern 35(4):694–711

    Google Scholar 

  181. Lee DH, Kim MH (1997) Database Summarization Using Fuzzy ISA Hierarchies. IEEE Trans Syst Man Cybern Part B: Cybern 27:68–78

    Google Scholar 

  182. Lee TW (1993) Independent component analysis. Kluwer Academic Publishers, Dordrech

    Google Scholar 

  183. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Google Scholar 

  184. Lehmann U, Streichert T, Otto B, Albat C, Hasemeier B, Christgen H, Schipper E, Hille U, Kreipe HH, Langer F (2010) Identification of differentially expressed microRNAs in human male breast cancer. BMC Bioinform 10(1–9)

    Google Scholar 

  185. Lehninger A, Nelson DL, Cox MM (2008) Lehninger principles of biochemistry, 5th edn. W. H. Freeman, New York

    Google Scholar 

  186. Lemmon AR, Milinkovitch MC (2002) The metapopulation genetic algorithm: an efficient solution for the problem of large phylogeny estimation. Proc Natl Acad Sci USA 99(16):10516–10521

    Google Scholar 

  187. Leng G, McGinnity TM, Prasad G (2006) Design for self-organizing fuzzy neural networks based on genetic algorithms. IEEE Trans Fuzzy Syst 14(6):755–766

    Google Scholar 

  188. Lesk AM (2002) Introduction to bioinformatics. Oxford University Press, London

    Google Scholar 

  189. LevItsky VG, Katokhin AV (2003) Recognition of eukaryotic promoters using a genetic algorithm based on iterative discriminant analysis. Sillico Biol 3(1–2):81–87

    Google Scholar 

  190. Lewin B (2003) Genes VIII. Benjamin Cummings

    Google Scholar 

  191. Lewis PO (1998) A genetic algorithm for maximum likelihood phylogeny inference using nucleotide sequence data. Mol Biol Evol 15(3):277–283

    Google Scholar 

  192. Li S, Chen X, Zhang H, Liang X, Xiang Y, Yu C, Zen K, Li Y, Zhang CY (2009) Differential expression of microRNAs in mouse liver under aberrant energy metabolic status. J Lipid Res 50:1756–1765

    Google Scholar 

  193. Liang KC, Wang X (2008) Gene regulatory network reconstruction using conditional mutual information. EURASIP J Bioinform Syst Biol 2008(1)

    Google Scholar 

  194. Liang S, Fuhrman S, Somogyi R (1998) REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. In: Proceedings of the pacific symposium on biocomputing, pp 18–29

    Google Scholar 

  195. Liao GC, Tsao TP (2006) Application of a fuzzy neural network combined with a chaos genetic algorithm and simulated annealing to short-term load forecasting. IEEE Trans Evol Comput 10(3):330–340

    Google Scholar 

  196. Lingras P, West C (2004) Interval set clustering of web users with rough K-means. J Intell Inf Syst 23(1):5–16

    MATH  Google Scholar 

  197. Lippmann R (1987) An introduction to computing with neural nets. IEEE Acoust Speech Signal Process Mag 4(2):4–22

    Google Scholar 

  198. Liu J, Gough J, Rost B (2006) Distinguishing protein-coding from non-coding RNAs through support vector machines. PLoS Genet 2(4):e29

    Google Scholar 

  199. Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theor 28:128–137 (Original version:Technical Report, Bell Labs, 1957)

    Google Scholar 

  200. Lowe D, Webb AR (1991) Optimized feature extraction and the Bayes decision in feed-forward classifier networks. IEEE Trans Patt Anal Mach Intell 13(4):264–355

    Google Scholar 

  201. Lu J, Getz G, Miska EA, Saavedra EA, Lamb J, Peck D, Cordero AS, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nat Lett 435(9):834–838

    Google Scholar 

  202. MacQueen J (1967) Some methods for classification and analysis of multivariate observation. In: Proceedings of the 5th Berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297

    Google Scholar 

  203. Maeda A, Ashida H, Taniguchi Y, Takahashi Y (1995) Data mining system using fuzzy rule induction. In: Proceedings of the IEEE international conference on fuzzy systems, pp 45–46

    Google Scholar 

  204. Maji P (2011) Fuzzy-rough supervised attribute clustering algorithm and classification of microarray data. IEEE Trans Syst Man Cybern Part B: Cybern 41(1):222–233

    Google Scholar 

  205. Maji P, Das C (2012) Relevant and significant supervised gene clusters for microarray cancer classification. IEEE Trans NanoBiosci 11(2):161–168

    Google Scholar 

  206. Maji P, Kundu MK, Chanda B (2008) Second order fuzzy measure and weighted co-occurrence matrix for segmentation of brain MR images. Fundam Inform 88(1–2):161–176

    MATH  MathSciNet  Google Scholar 

  207. Maji P, Pal SK (2007) RFCM:a hybrid clustering algorithm using rough and fuzzy sets. Fundam Inform 80(4):475–496

    MATH  MathSciNet  Google Scholar 

  208. Maji P, Pal SK (2007) Rough set based generalized fuzzy C-means algorithm and quantitative indices. IEEE Trans Syst Man Cybern Part B: Cybern 37(6):1529–1540

    Google Scholar 

  209. Maji P, Pal SK (2012) Rough-fuzzy pattern recognition: applications in bioinformatics and medical imaging. Wiley-IEEE Computer Society Press, New York

    Google Scholar 

  210. Maji P, Paul S (2010) Rough sets for selection of molecular descriptors to predict biological activity of molecules. IEEE Trans Syst Man Cybern Part C: Appl Rev 40(6):639–648

    Google Scholar 

  211. Maji P, Paul S (2011) Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data. Int J Approx Reason 52(3):408–426

    Google Scholar 

  212. Maji P, Paul S (2013) Robust rough-fuzzy C-means algorithm: Design and applications in coding and non-coding RNA expression data clustering. Fundam Inform 124:153–174

    MathSciNet  Google Scholar 

  213. Maji P, Paul S (2013) Rough-fuzzy clustering for grouping functionally similar genes from microarray data. IEEE/ACM Trans Comput Biol Bioinform 10(2):286–299

    Google Scholar 

  214. Maji P, Paul S (2013) Rough set-based feature selection: criteria of max-dependency, max-relevance, and max-significance. In: Skowron A, Suraj Z (eds) Rough sets and intelligent systems—Professor Zdzis+aw Pawlak in memoriam, vol 43, pp 393–418

    Google Scholar 

  215. Maniezzo V (1994) Genetic evolution of the topology and weight distribution of neural networks. IEEE Trans Neural Netw 5:39–53

    Google Scholar 

  216. Martin L, Anguita A, Maojo V, Crespo J (2010) Integration of omics data for cancer research. In: Cho WCS (ed) An omics perspective on cancer research. Springer, The Netherlands, pp 249–266

    Google Scholar 

  217. Masulli F, Rovetta S (2006) Soft transition from probabilistic to possibilistic fuzzy clustering. IEEE Trans Fuzzy Syst 14(4):516–527

    Google Scholar 

  218. Matsuda H (1995) Protein phylogenetic inference using maximum likelihood with a genetic algorithm. In: Proceedings of the pacific symposium on biocomputing, pp 512–523

    Google Scholar 

  219. Maulik U, Bandyopadhyay S (2003) Fuzzy partitioning using real coded variable length genetic algorithm for pixel classification. IEEE Trans Geosci Remote Sens 41(5):1075–1081

    Google Scholar 

  220. May ACW, Johoson MS (1995) Improved genetic algorithm-based protein structure compaisons: pairwise and multiple superpositions. Protein Eng 8:873–882

    Google Scholar 

  221. McGarvey PB, Huang H, Mazumder R, Zhang J, Chen Y, Zhang C, Cammer S, Will R, Odle M, Sobral B, Moore M, Wu CH (2009) Systems integration of biodefense omics data for analysis of pathogen-host interactions and identification of potential targets. PLoS One 4(9):e7162

    Google Scholar 

  222. McLachlan GJ, Bean RW, Peel D (2002) A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 18:413–422

    Google Scholar 

  223. McLachlan GJ, Do KA, Ambroise C (2004) Analyzing microarray gene expression data. Wiley, Hoboken

    MATH  Google Scholar 

  224. Medvedovic M, Yeung KY, Bumgarner RE (2004) Bayesian mixture model based clustering of replicated microarray data. Bioinformatics 20(8):1222–1232

    Google Scholar 

  225. Mehta M, Agrawal R, Rissanen J (1996) SLIQ: A fast scalable classifier for data mining. In: Proceedings of international conference on extending database technology, Avignon, France

    Google Scholar 

  226. Minakuchi Y, Satou K, Konagaya A (2002) Prediction of protein–protein interaction sites using support vector machines. Genome Inform 13:322–323

    Google Scholar 

  227. Mitchell TM (1982) Generalization as search. Artif Intell 18(2):203–226

    Google Scholar 

  228. Mitra S, De RK, Pal SK (1997) Knowledge-based fuzzy MLP for classification and rule generation. IEEE Trans Neural Netw 8:1338–1350

    Google Scholar 

  229. Mitra S, Pal SK (1995) Fuzzy multi-layer perceptron, inferencing and rule generation. IEEE Trans Neural Netw 6:51–63

    Google Scholar 

  230. Mitra S, Pal SK (1996) Fuzzy self organization, inferencing and rule generation. IEEE Trans Syst Man Cybern Part A: Syst Humans 26:608–620

    Google Scholar 

  231. Moret BME (1982) Decision trees and diagrams. Comput Surv 14(4):593–623

    Google Scholar 

  232. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olsoni AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662

    Google Scholar 

  233. Mukhopadhyay A, Maulik U, Bandyopadhyay S (2009) Multiobjective genetic algorithm-based fuzzy clustering of categorical attributes. IEEE Trans Evol Comput 13(5):991–1005

    Google Scholar 

  234. Murthy CA, Bhandari D, Pal SK (1998) \(\epsilon \)-optimal stopping time for genetic algorithm. Fundam Inform 35(1–4):91–111

    MATH  MathSciNet  Google Scholar 

  235. Mushrif MM, Ray AK (2008) Color image segmentation: rough-set theoretic approach. Patt Recogn Lett 29(4):483–493

    Google Scholar 

  236. Narayanan A, Wu XK, Yang ZR (2002) Mining viral protease data to extract cleavage knowledge. Bioinformatics 18:5–13

    Google Scholar 

  237. Nasraoui O, Krishnapuram R, Joshi A (1999) Relational clustering based on a new robust estimator with application to web mining. In: Proceedings of the 18th international conference of the North American Fuzzy Information Processing Society, New York, pp 705–709

    Google Scholar 

  238. Nasser S, Ranade AR, Sridhart S, Haney L, Korn RL, Gotway MB, Weiss GJ, Kim S (2009) Identifying miRNA and imaging features associated with metastasis of lung cancer to the brain. In: Proceedings of IEEE international conference on bioinformatics and biomedicine, pp 246–251

    Google Scholar 

  239. Needleman SB, Wunch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Google Scholar 

  240. Ng RT, Han J (1994) Efficient and effective clustering methods for spatial data mining. In: Proceedings of the 20th international conference on very large databases, Santiago, Chile, pp 144–155

    Google Scholar 

  241. Niemann H (1980) Linear and nonlinear mappings of patterns. Patt Recogn 12:83–87

    MATH  Google Scholar 

  242. Notredame C, Higgins DG (1996) SAGA: sequence alignment by genetic algorithm. Nucl Acids Res 24(8):1515–1524

    Google Scholar 

  243. Nowicki R (2008) On combining neuro-fuzzy architectures with the rough set theory to solve classification problems with incomplete data. IEEE Trans Knowl Data Eng 20(9):1239–1253

    Google Scholar 

  244. Nowicki R (2009) Rough neuro-fuzzy structures for classification with missing data. IEEE Trans Syst Man Cybern Part B: Cybern 39(6):1334–1347

    Google Scholar 

  245. Ono I, Fujiki H, Ootsuka M, Nakashima N, Ono N, Tate S (2002) Global optimization of protein 3-dimensional structures in NMR by a genetic algorithm. Proc Congr Evol Comput 1:303–308

    Google Scholar 

  246. Orlowska E (ed) (2010) Incomplete information: rough set analysis. Physica-Verlag, New York

    Google Scholar 

  247. Ortega FJ, Moreno-Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer A, Rodriguez-Hermosa JI, Ruiz B, Ricart W, Peral B, Real JMF (2010) MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One 5(2):1–9

    Google Scholar 

  248. Pal NR, Pal K, Keller JM, Bezdek JC (2005) A possibilistic fuzzy C-means clustering algorithm. IEEE Trans Fuzzy Syst 13(4):517–530

    MathSciNet  Google Scholar 

  249. Pal SK (2002) Soft computing pattern recognition: principles, integrations and data mining. In: Terano T, Nishida T, Namatame A, Tsumoto S, Ohswa Y, Washio T (eds) Advances in artificial intelligence, vol 2253. Lecture notes in artificial intelligence. Springer, Berlin, pp 261–268

    Google Scholar 

  250. Pal SK (2004) Soft data mining, computational theory of perceptions, and rough-fuzzy approach. Inf Sci 163(1–3):5–12

    Google Scholar 

  251. Pal SK, Bhandari D (1994) Selection of optimal set of weights in a layered network using genetic algorithms. Inf Sci 80:213–234

    Google Scholar 

  252. Pal SK, Ghosh A (1990) Index of area coverage of fuzzy image subsets and object extraction. Patt Recogn Lett 11(12):831–841

    MATH  Google Scholar 

  253. Pal SK, Ghosh A (1992) Image segmentation using fuzzy correlation. Inf Sci 62(3):223–250

    MATH  MathSciNet  Google Scholar 

  254. Pal SK, Ghosh A (1996) Neuro-fuzzy computing for image processing and pattern recognition. Int J Syst Sci 27(12):1179–1193

    MATH  Google Scholar 

  255. Pal SK, Ghosh A, Shankar BU (2000) Segmentation of remotely sensed images with fuzzy thresholding, and quantitative evaluation. Int J Remote Sens 21(11):2269–2300

    Google Scholar 

  256. Pal SK, Gupta BD, Mitra P (2004) Rough self organizing map. Appl Intell 21(3):289–299

    MATH  Google Scholar 

  257. Pal SK, King RA, Hashim AA (1983) Automatic gray level thresholding through index of fuzziness and entropy. Patt Recogn Lett 1:141–146

    Google Scholar 

  258. Pal SK, Majumder DD (1986) Fuzzy mathemetical approach to pattern recognition. Wiley, Halsted Press, New York

    Google Scholar 

  259. Pal SK, Mitra P (2002) Multispectral image segmentation using the rough set-initialized-EM algorithm. IEEE Trans Geosci Remote Sens 40(11):2495–2501

    Google Scholar 

  260. Pal SK, Mitra P (2004) Pattern recognition algorithms for data mining. CRC Press, Boca Raton

    MATH  Google Scholar 

  261. Pal SK, Mitra S (1999) Neuro-fuzzy pattern recognition: methods in soft computing. Wiley, New York

    Google Scholar 

  262. Pal SK, Mitra S, Mitra P (2003) Rough-fuzzy MLP: modular evolution, rule generation, and evaluation. IEEE Trans Knowl Data Eng 15(1):14–25

    Google Scholar 

  263. Pal SK, Pal A (eds) (2001) Pattern recognition: from classical to modern approaches. World Scientific, Singapore

    Google Scholar 

  264. Pal SK, Polkowski L, Skowron A (eds) (2003) Rough-neuro computing: techniques for computing with words. Springer, Heidelberg

    Google Scholar 

  265. Pal SK, Skowron A (eds) (1999) Rough-fuzzy hybridization: a new trend in decision making. Springer, Singapore

    MATH  Google Scholar 

  266. Pal SK, Wang PP (eds) (1996) Genetic algorithms for pattern recognition. CRC Press, Boca Raton

    Google Scholar 

  267. Parkinson H, Kapushesky M, Kolesnikov N, Rustici G, Shojatalab M, Abeygunawardena N, Berube H, Dylag M, Emam I, Farne A, Holloway E, Lukk M, Malone J, Mani R, Pilicheva E, Rayner TF, Rezwan F, Sharma A, Williams E, Bradley XZ, Adamusiak T, Brandizi M, Burdett T, Coulson R, Krestyaninova M, Kurnosov P, Maguire E, Neogi SG, Serra PR, Sansone SA, Sklyar N, Zhao M, Sarkans U, Brazma A (2009) ArrayExpress update—from an archive of functional genomics experiments to the atlas of gene expression. Nucl Acids Res 27:D865–D872

    Google Scholar 

  268. Patton AL, Punch WF, Goddman ED (1995) A standard GA approach to native protein conformation prediction. In: Proceedings of the 6th international conference on genetic algorithms, pp 574–581

    Google Scholar 

  269. Paul S, Maji P (2013) \(\mu \)HEM for identification of differentially expressed miRNAs using hypercuboid equivalence partition matrix. BMC Bioinform 14(1):266

    MathSciNet  Google Scholar 

  270. Paul S, Maji P (2013) Rough sets for insilico identification of differentially expressed miRNAs. Int J Nanomed 8:63–74

    Google Scholar 

  271. Pawlak Z (1991) Rough sets: theoretical aspects of resoning about data. Kluwer, Dordrecht

    Google Scholar 

  272. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85(8):2444–2448

    Google Scholar 

  273. Pedersen JT, Moult J (1997) Protein folding simulations with genetic algorithms and a detailed molecular description. J Mol Biol 269(2):240–259

    Google Scholar 

  274. Pereira PM, Marques JP, Soares AR, Carreto L, Santos MAS (2010) MicroRNA expression variability in human cervical tissues. PLoS One 5(7):1–12

    Google Scholar 

  275. Pevsner J (2009) Bioinformatics and functional genomics. Wiley-Blackwell, New York

    Google Scholar 

  276. Phung SL, Bouzerdoum A (2007) A pyramidal neural network for visual pattern recognition. IEEE Trans Neural Netw 18(2):329–343

    Google Scholar 

  277. Polkowski L (2002) Rough sets. Physica-Verlag, Heidelberg

    MATH  Google Scholar 

  278. Polkowski L, Skowron A (eds) (1998) Rough sets in knowledge discovery, vols 1 and 2. Physica-Verlag, Heidelberg

    Google Scholar 

  279. Pudil P, Novovicova J, Kittler J (1994) Floating search methods in feature-selection. Patt Recogn Lett 15:1119–1125

    Google Scholar 

  280. Qian N, Sejnowski TJ (1988) Predicting the secondary structure of globular proteins using neural network models. J Mol Biol 202(4):865–884

    Google Scholar 

  281. Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2:418–427

    Google Scholar 

  282. Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann, San Mateo

    Google Scholar 

  283. Quteishat A, Lim CP, Tan KS (2010) A modified fuzzy min–max neural network with a genetic-algorithm-based rule extractor for pattern classification. IEEE Trans Syst Man Cybern Part A: Syst Hum 40(3):641–650

    Google Scholar 

  284. Rabow AA, Scheraga HA (1996) Improved genetic algorithm for the protein folding problem by use of a cartesian combination operator. Protein Sci 5:1800–1815

    Google Scholar 

  285. Raponi M, Dossey L, Jatkoe T, Wu X, Chen G, Fan H, Beer DG (2009) MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res 69(14):5776–5783

    Google Scholar 

  286. Reichhardt T (1999) It’s sink or swim as a tidal wave of data approaches. Nature 399(6736):517–520

    Google Scholar 

  287. Riis SK, Krogh A (1996) Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments. J Comput Biol 3:163–183

    Google Scholar 

  288. Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P, Iyer V, Jeffrey SS, de RM Van, Waltham M, Pergamenschikov A, Lee JC, Lashkari D, Shalon D, Myers TG, Weinstein JN, Botstein D, Brown PO (2000) Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24(3):227–235

    Google Scholar 

  289. Roy A, Pal SK (2003) Fuzzy discretization of feature space for a rough set classifier. Patt Recogn Lett 24(6):895–902

    MATH  Google Scholar 

  290. Russo M (1998) FuGeNeSys: a fuzzy genetic neural system for fuzzy modeling. IEEE Trans Fuzzy Syst 6(3):373–388

    Google Scholar 

  291. Saeys Y, Inza I, Larraaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507–2517

    Google Scholar 

  292. Safavian SR, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 21(3):660–674

    MathSciNet  Google Scholar 

  293. Saha S, Christensen JP (1994) Genetic design of sparse feedforward neural networks. Inf Sci 79:191–200

    MATH  Google Scholar 

  294. Salamov A, Solovyev V (1995) Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments. J Mol Biol 247:11–15

    Google Scholar 

  295. Salzberg S, Cost S (1992) Predicting protein secondary structure with a nearest-neighbor algorithm. J Mol Biol 227:371–374

    Google Scholar 

  296. Sammon JW (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comput 18:401–409

    Google Scholar 

  297. Saxena P, Whang I, Voziyanov Y, Harkey C, Argos P, Jayaram M, Dandekar T (1997) Probing flip: a new approach to analyze the structure of a DNA recognizing protein by combining the genetic algorithm, metagenesis and non-canonical DNA target sites. Biochim Biophys Acta—Protein Struct Mol Enzymol 1340(2):187–204

    Google Scholar 

  298. Scholkopf B (1997) Support vector learning. Ph.D. thesis, Technische Universilal, Berlin

    Google Scholar 

  299. Scholkopf B, Sung KK, Burges CJC, Girosi F, Niyogi P, Poggio T, Vapnik V (1997) Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans Signal Process 45(11):2758–2765

    Google Scholar 

  300. Scholkpf B, Smola A, Muller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319

    Google Scholar 

  301. Schrauder MG, Strick R, Schulz-Wendtland R, Strissel PL, Kahmann L, Loehberg CR, Lux MP, Jud SM, Hartmann A, Hein A, Bayer CM, Bani MR, Richter S, Adamietz BR, Wenkel E, Rauh C, Beckmann MW, Fasching PA (2012) Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection. PLoS One 7(1):1–9

    Google Scholar 

  302. Schulze-Kremer S (1995) Molecular bioinformatics: algorithms and applications. Walter de Gruyter, Berlin

    Google Scholar 

  303. Schulze-Kremer S (2002) Genetic algorithms and protein folding: methods in molecular biology. Protein Struct Predict: Methods Protoc 143:175–222

    Google Scholar 

  304. Searls DB (1996) Sequence alignment through pictures. Trends Genet 12:35–37

    Google Scholar 

  305. Searls DB, Murphy KP (1995) Automata-theoretic models of mutation and alignment. In: Proceedings of the 3rd international conference on intelligent systems for molecular biology, The AAAI Press, pp 341–349

    Google Scholar 

  306. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34(2):166–176

    Google Scholar 

  307. Seng TL, Bin Khalid M, Yusof R (1999) Tuning of a neuro-fuzzy controller by genetic algorithm. IEEE Trans Syst Man Cybern Part B: Cybern 29(2):226–236

    Google Scholar 

  308. Setubal J, Meidanis J (1999) Introduction to computational molecular biology. Thomson, Boston

    Google Scholar 

  309. Shafer J, Agrawal R, Mehta M (1996) SPRINT: a scalable parallel classifier for data mining. In: Proceedings of the 22th international conference on very large data bases, Morgan Kaufmann, pp 544–555

    Google Scholar 

  310. Shamir R, Sharan R (2000) CLICK: a clustering algorithm for gene expression analysis. In: Proceedings of the 8th international conference on intelligent systems for molecular biology, pp 307–331

    Google Scholar 

  311. Shapiro BA, Navetta J (1994) A massively parallel genetic algorithm for RNA secondary structure prediction. J Supercomput 8:195–207

    MATH  Google Scholar 

  312. Shapiro BA, Wu JC (1996) An annealing mutation operator in the genetic algorithms for RNA folding. Comput Appl Biosci 12:171–180

    Google Scholar 

  313. Shapiro BA, Wu JC, Bengali D, Potts MJ (2001) The massively parallel genetic algorithm for RNA folding: MIMD implementation and population variation. Bioinformatics 17(2):137–148

    Google Scholar 

  314. Shen Q, Chouchoulas A (1999) Combining rough sets and data-driven fuzzy learning for generation of classification rules. Patt Recogn 32(12):2073–2076

    Google Scholar 

  315. Skourikhine A (2000) Phylogenetic tree construction using self-adaptive genetic algorithm. In: Proceedings of the IEEE international symposium on bioinformatics and biomedical engineering, pp 129–134

    Google Scholar 

  316. Skowron A, Swiniarski R (2001) Rough sets in pattern recognition. In: Pal SK, Pal A (eds) Pattern recognition: from classical to modern approaches. World Scientific, Singapore, pp 385–428

    Google Scholar 

  317. Slezak D (1996) Approximate reducts in decision tables. In: Proceedings of the 6th international conference on information processing and management of uncertainty in knowledge-based systems, pp 1159–1164

    Google Scholar 

  318. Slezak D (2007) Rough sets and few-objects-many-attributes problem: the case study of analysis of gene expression data sets. In: Proceedings of the frontiers in the convergence of bioscience and information technologies, pp 233–240

    Google Scholar 

  319. Slezak D, Betlinski P (2012) A role of (not) crisp discernibility in rough set approach to numeric feature selection. In: Hassanien AE, Salem ABM, Ramadan R, Kim TH (eds) Advanced machine learning technologies and applications, vol 322, pp 13–23

    Google Scholar 

  320. Slezak D, Janusz A (2011) Ensembles of bireducts: towards robust classification and simple representation. In: Kim TH, Adeli H, Slezak D, Sandnes F, Song X, Chung KI, Arnett KP (eds) Future generation information technology, vol 7105, pp 64–77

    Google Scholar 

  321. Slezak D, Widz S (2010) Evolutionary inspired optimization of feature subset ensembles. In: Proceedings of the 2nd world congress on nature and biologically inspired computing, pp 437–442

    Google Scholar 

  322. Slezak D, Widz S (2010) Is it important which rough-set-based classifier extraction and voting criteria are applied together? In: Proceedings of the 7th international conference on rough sets and current trends in computing, pp 187–196

    Google Scholar 

  323. Slezak D, Widz S (2011) Rough-set-inspired feature subset selection, classifier construction, and rule aggregation. In: Yao JT, Ramanna S, Wang G, Suraj Z (eds) Rough sets and knowledge technology, vol 6954, pp 81–88

    Google Scholar 

  324. Slezak D, Wroblewski J (2007) Roughfication of numeric decision tables: the case study of gene expression data. In: Proceedings of the 2nd international conference on rough sets and knowledge technology. Springer, Berlin, pp 316–323

    Google Scholar 

  325. Smith TF, Waterman MS (1981) Identification of common molecular sequences. J Mol Biol 147:195–197

    Google Scholar 

  326. Somorjai RL, Dolenko B, Baumgartner R (2003) Class prediction and discovery using gene microarray and proteomics mass spectroscopy data: curses, caveats, cautions. Bioinformatics 19(12):1484–1491

    Google Scholar 

  327. Stosic BD, Fittipaldi IP (1997) Pattern recognition via ISING model with long range interactions. Phys A: Stat Mech Appl 242(3–4):323–331

    Google Scholar 

  328. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550

    Google Scholar 

  329. Sun Z, Xia X, Guo Q, Xu D (1999) Protein structure prediction in a 210-type lattice model: parameter optimization in the genetic algorithm using orthogonal array. J Protein Chem 18(1):39–46

    Google Scholar 

  330. Sun ZL, Au KF, Choi TM (2007) A neuro-fuzzy inference system through integration of fuzzy logic and extreme learning machines. IEEE Trans Syst Man Cybern Part B: Cybern 37(5):1321–1331

    Google Scholar 

  331. Suna F, Zhanga W, Xionga G, Yanb M, Qian Q, Lia J, Wanga Y (2010) Identification and functional analysis of the MOC1 interacting protein 1. J Genet Genomics 37(1):69–77

    Google Scholar 

  332. Sventik V, Wang T, Tong C, Liaw A, Sheridan RP, Song Q (2005) Boosting: an ensemble learning tool for compound classification and QSAR modeling. J Chem Inf Model 45(3):786–799

    Google Scholar 

  333. Swain P, Hauska H (1977) The decision tree classifier design and potential. IEEE Trans Geosci Electron 15:142–147

    Google Scholar 

  334. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 96(6):2907–2912

    Google Scholar 

  335. Tavazoie S, Hughes D, Campbell MJ, Cho RJ, Church GM (1999) Systematic determination of genetic network architecture. Nat Genet 22(3):281–285

    Google Scholar 

  336. Theodoridis S, Koutroumbas K (2008) Pattern recognition. Elsevier Science, New York

    Google Scholar 

  337. Thompson K (1968) Regular expression search algorithm. Commun ACM 11(6):419–422

    MATH  Google Scholar 

  338. Thomson R, Hodgman C, Yang ZR, Doyle AK (2003) Characterising proteolytic cleavage site activity using bio-basis function neural network. Bioinformatics 19(14):1741–1747

    Google Scholar 

  339. Tieri P, Fuente A, Termanini A, Franceschi C (2011) Integrating omics data for signaling pathways, interactome reconstruction, and functional analysis. In: Mayer B (ed) Bioinformatics for omics data, methods in molecular biology, vol 719. Springer, New York, pp 415–433

    Google Scholar 

  340. Timothy TS, Diego DD, David D, James JJ (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301(5629):102–105

    Google Scholar 

  341. Tino P, Zhao H, Yan H (2011) Searching for coexpressed genes in three-color cDNA microarray data using a probabilistic model-based Hough transform. IEEE/ACM Trans Comput Biol Bioinform 8(4):1093–1107

    Google Scholar 

  342. Tobias OJ, Seara R (2002) Image segmentation by histogram thresholding using fuzzy sets. IEEE Trans Image Process 11(12):1457–1465

    Google Scholar 

  343. Tou JT, Gonzalez RC (1974) Pattern recognition principles. Addison-Wesley, Reading

    MATH  Google Scholar 

  344. Tung AKH, Han J, Lakshmanan LVS, Ng RT (2001) Constraint-based clustering in large databases. In: Proceedings of the international conference on database theory,. London, UK, pp 405–419

    Google Scholar 

  345. Tung AKH, Hou J, Han J (2001) Spatial clustering in the presence of obstacles. In: Proceedings of the international conference on data engineering, Heidelberg, Germany, pp 359–367

    Google Scholar 

  346. Turner AP, Lones MA, Fuente LA, Stepney S, Caves LSD, Tyrrell AM (2013) The incorporation of epigenetics in artificial gene regulatory networks. Biosystems 112(2):56–62

    Google Scholar 

  347. Tzur G, Israel A, Levy A, Benjamin H, Meiri E, Shufaro Y, Meir K, Khvalevsky E, Spector Y, Rojansky N, Bentwich Z, Reubinoff BE, Galun E (2009) Comprehensive gene and microRNA expression profiling reveals a role for microRNAs in human liver development. PLoS One 4(10):1–13

    Google Scholar 

  348. Uberbacher E, Mural R (1991) Locating protein-coding regions in human DNA sequences by a multiple sensor-neural network approach. Proc Natl Acad Sci USA 88(24):11261–11265

    Google Scholar 

  349. Unger R, Moult J (1993) On the applicability of genetic algorithms to protein folding. Proc Hawaii Int Conf Syst Sci 1:715–725

    Google Scholar 

  350. Valdes JJ, Barton AJ (2005) Relevant attribute discovery in high dimensional data: application to breast cancer gene expressions. In: Proceedings of the 1st international conference on rough sets and knowledge technology, Springer-Berlin, Heidelberg, pp 482–489

    Google Scholar 

  351. Vapnik V (1995) The nature of statistical learning theory. Springer, New York

    MATH  Google Scholar 

  352. Vignes M, Forbes F (2009) Gene clustering via integrated Markov models combining individual and pairwise features. IEEE/ACM Trans Comput Biol Bioinform 6(2):260–270

    Google Scholar 

  353. Vizan P, Sanchez-Tena S, Alcarraz-Vizan G, Soler M, Messeguer R, Pujol M, Lee WNP, Cascante M (2009) Characterization of the metabolic changes underlying growth factor angiogenic activation: identification of new potential therapeutic targets. Carcinogenesis 30(6):946–952

    Google Scholar 

  354. Wang C, Yang S, Sun G, Tang X, Lu S, Neyrolles O, Gao Q (2011) Comparative miRNA expression profiles in individuals with latent and active tuberculosis. PLoS One 6(10):1–11

    Google Scholar 

  355. Wang H, Wang Z, Li X, Gong B, Feng L, Zhou Y (2011) A robust approach based on Weibull distribution for clustering gene expression data. Algorithms Mol Biol 6(1):14

    Google Scholar 

  356. Wang J, Chen B, Wang Y, Wang N, Garbey M, Tran-Son-Tay R, Berceli SA, Wu R (2013) Reconstructing regulatory networks from the dynamic plasticity of gene expression by mutual information. Nucl Acids Res 41(8):e97

    Google Scholar 

  357. Wang L, Zhu J, Zou H (2008) Hybrid huberized support vector machines for microarray classification and gene selection. Bioinformatics 24(3):412–419

    Google Scholar 

  358. Wang WY, Li YH (2003) Evolutionary learning of BMF fuzzy-neural networks using a reduced-form genetic algorithm. IEEE Trans Syst Man Cybern Part B: Cybern 33(6):966–976

    Google Scholar 

  359. Wang Y, Dunham MH, Waddle JA, Mcgee M (2006) Classifier fusion for poorly-differentiated tumor classification using both messenger RNA and micro RNA expression profiles. In: Proceedings of the international conference on computational systems, bioinformatics, pp 1–5

    Google Scholar 

  360. Waterman M (1990) RNA structure prediction. Methods in enzymology. Academic, San Diego, p 164

    Google Scholar 

  361. Wei Q, Chen G (1999) Mining generalized association rules with fuzzy taxonomic structures. In: Proceedings of the 18th international conference of the North American Fuzzy Information Processing Society, New York, pp 477–481

    Google Scholar 

  362. Whitley D, Starkweather T, Bogart C (1990) Genetic algorithms and neural networks: optimizing connections and connectivity. Parallel Comput 14:347–361

    Google Scholar 

  363. Widz S, Revett K, Slezak D (2005) A hybrid approach to MR imaging segmentation using unsupervised clustering and approximate reducts. In: Proceedings of the 10th international conference on rough sets, fuzzy sets, data mining, and granular, computing, pp 372–382

    Google Scholar 

  364. Widz S, Revett K, Slezak D (2005) A rough set-based magnetic resonance imaging partial volume detection system. In: Proceedings of the 1st international conference on pattern recognition and machine intelligence, pp 756–761

    Google Scholar 

  365. Widz S, Slezak D (2007) Approximation degrees in decision reduct-based MRI segmentation. In: Proceedings of the frontiers in the convergence of bioscience and information technologies, pp 431–436

    Google Scholar 

  366. Wiese KC, Glen E (2003) A permutation-based genetic algorithm for the RNA folding problem: a critical look at selection strategies, crossover operators, and representation issues. Biosystems 72(1–2):29–41

    Google Scholar 

  367. Winston PH (1975) Learning structural descriptions from examples. In: Winston PH (ed) The psycology of computer vision. McGraw Hill, New York

    Google Scholar 

  368. Wong WC, Cho SY, Quek C (2009) R-POPTVR: a novel reinforcement-based POPTVR fuzzy neural network for pattern classification. IEEE Trans Neural Netw 20(11):1740–1755

    Google Scholar 

  369. Wroblewski J (1995) Finding minimal reducts using genetic algorithms. In: Proceedings of the 2nd annual joint conference on information sciences, pp 186–189

    Google Scholar 

  370. Xiao K, Ho SH, Hassanien AE (2008) Automatic unsupervised segmentation methods for MRI based on modified fuzzy C-means. Fundam Inform 87(3–4):465–481

    MATH  MathSciNet  Google Scholar 

  371. Xiaodong C, Giannakis GB (2006) Identifying differentially expressed genes in microarray experiments with model-based variance estimation. IEEE Trans Signal Process 54(6):2418–2426

    Google Scholar 

  372. Xing EP, Karp RM (2001) CLIFF: clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics 17(1):306–315

    Google Scholar 

  373. Xu Y, Olman V, Xu D (2002) Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees. Bioinformatics 18(4):536–545

    Google Scholar 

  374. Yang JM, Kao CY (2000) A family competition evolutionary algorithm for automated docking of flexible ligands to proteins. IEEE Trans Inform Technol Biomed 4(3):225–237

    Google Scholar 

  375. Yang ZR (2004) Biological application of support vector machines. Brief Bioinform 5(4):328–338

    Google Scholar 

  376. Yang ZR (2005) Prediction of caspase cleavage sites using Bayesian bio-basis function neural networks. Bioinformatics 21(9):1831–1837

    Google Scholar 

  377. Yang ZR (2010) Machine learning approaches to bioinformatics. World Scientific Publishing Company, Hackensack

    Google Scholar 

  378. Yang ZR, Chou KC (2004) Predicting the O-linkage sites in glycoproteins using bio-basis function neural networks. Bioinformatics 20(6):903–908

    Google Scholar 

  379. Yang ZR, Thomson R (2005) Bio-basis function neural network for prediction of protease cleavage sites in proteins. IEEE Trans Neural Netw 16(1):263–274

    MATH  Google Scholar 

  380. Yang ZR, Thomson R, McNeil P, Esnouf R (2005) RONN: use of the bio-basis function neural network technique for the detection of natively disordered regions in proteins. Bioinformatics 21(16):3369–3376

    Google Scholar 

  381. Yanhua C, Ming D, Rege M (2007) Gene expression clustering: a novel graph partitioning approach. In: Proceedings of international joint conference on neural networks, pp 1542–1547

    Google Scholar 

  382. Yeung K, Medvedovic M, Bumgarner R (2003) Clustering gene-expression data with repeated measurements. Genome Biol 4(5):R34

    Google Scholar 

  383. Yeung KY, Fraley C, Murua A, Raftery AE, Ruzz WL (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics 17(10):977–987

    Google Scholar 

  384. Yu Z, Wong HS, Wang H (2007) Graph-based consensus clustering for class discovery from gene expression data. Bioinformatics 23(21):2888–2896

    Google Scholar 

  385. Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353

    MATH  MathSciNet  Google Scholar 

  386. Zadeh LA (1979) Fuzzy sets and information granularity. In: Gupta M, Ragade R, Yager R (eds) Advances in fuzzy set theory and applications. North-Holland Publishing Co., Amsterdam, pp 3–18

    Google Scholar 

  387. Zadeh LA (1994) Fuzzy logic, neural networks, and soft computing. Commun ACM 37:77–84

    Google Scholar 

  388. Zhang J (2005) Modeling and optimal control of batch processes using recurrent neuro-fuzzy networks. IEEE Trans Fuzzy Syst 13(4):417–427

    Google Scholar 

  389. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases. In: Proceedings of the ACM-SIGMOD international conference on management of data, Montreal, Canada, pp 103–114

    Google Scholar 

  390. Zhang X, Zhao XM, He K, Lu L, Cao Y, Liu J, Hao JK, Liu ZP, Chen L (2012) Inferring gene regulatory networks from gene expression data by PC-algorithm based on conditional mutual information. Bioinformatics 28:98–104

    Google Scholar 

  391. Zhang Y, Rajapakse JC (eds) (2008) Machine learning in bioinformatics. Wiley, New York

    Google Scholar 

  392. Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S (2010) A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One 5(10):1–12

    Google Scholar 

  393. Zheng M, Wu JN, Huang YX, Liu GX, Zhou Y, Zhou CG (2012) Inferring gene regulatory networks by singular value decomposition and gravitation field algorithm. PLoS One 7(12):e51141

    Google Scholar 

  394. Zhou L, Zenebe A (2008) Representation and reasoning under uncertainty in deception detection: a neuro-fuzzy approach. IEEE Trans Fuzzy Syst 16(2):442–454

    Google Scholar 

  395. Zuker M, Striegler P (1981) Optimal computer folding of large RNA secondary sequences using thermodynamics and auxiliary information. Nucl Acids Res 9:133–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Maji .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maji, P., Paul, S. (2014). Introduction to Pattern Recognition and Bioinformatics. In: Scalable Pattern Recognition Algorithms. Springer, Cham. https://doi.org/10.1007/978-3-319-05630-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05630-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05629-6

  • Online ISBN: 978-3-319-05630-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics