Skip to main content

Porous Silicon in Immunoisolation and Bio-filtration

  • Reference work entry
  • First Online:
Handbook of Porous Silicon
  • 3520 Accesses

Abstract

This chapter focuses on cell immunoisolation and bio-filtration applications of porous silicon membranes. After an introduction on immunoisolation for the treatment of diabetes, the different materials used for that function are reviewed and compared. Applications involving porous silicon are then presented in more detail. Other uses of microfabricated porous silicon membranes in hemofiltration and protein sorting are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adiga SP, Jin C, Curtiss LA, Monteiro-Riviere NA, Narayan RJ (2009) Nanoporous membranes for medical and biological applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(5):568–581

    Article  Google Scholar 

  • Agrawal AA, Nehilla BJ, Reisig KV, Gaborski TR, Fang DZ, Striemer CC, Fauchet PM, McGrath JL (2010) Porous nanocrystalline silicon membranes as highly permeable and molecularly thin substrates for cell culture. Biomaterials 31(20):5408–5417

    Article  Google Scholar 

  • Albu SP, Ghicov A, Macak JM, Hahn R, Schmuki P (2007) Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett 7(5):1286–1289

    Article  Google Scholar 

  • Albu SP, Ghicov A, Berger S, Jha H, Schmuki P (2010) TiO2 nanotube layers: flexible and electrically active flow-through membranes. Electrochem Commun 12(10):1352–1355

    Article  Google Scholar 

  • Basta G, Calafiore R (2011) Immunoisolation of pancreatic islet grafts with no recipient’s immunosuppression: actual and future perspectives. Curr Diab Rep 11(5):384–391

    Article  Google Scholar 

  • Beck J, Angus R, Madsen B, Britt D, Vernon B, Nguyen KT (2007) Islet encapsulation: strategies to enhance islet cell functions. Tissue Eng 13(3):589–599

    Article  Google Scholar 

  • Boninsegna S, Dal Toso R, Dal Monte R, Carturan G (2003) Alginate microspheres loaded with animal cells and coated by a siliceous layer. J Sol-Gel Sci Tech 26(1–3):1151–1157

    Article  Google Scholar 

  • Carturan G, Dellagiacoma G, Rossi M, Dal Monte R, Muraca M (1997) Encapsulation of viable animal cells for hybrid bioartificial organs by the biosil method. Proc SPIE, Sol-Gel Opt IV 3136:366–373

    Google Scholar 

  • Carturan G, Dal Toso R, Boninsegna S, Dal Monte R (2004) Encapsulation of functional cells by sol-gel silica: actual progress and perspectives for cell therapy. J Mater Chem 14(14):2087–2098

    Article  Google Scholar 

  • Cho S, Lee S, Jeong SH, Kim Y, Kim SC, Hwang W, Park J (2013) Anodic aluminium oxide membranes for immunoisolation with sufficient oxygen supply for pancreatic islets. Integr Biol 5(5):828–834

    Article  Google Scholar 

  • Colton CK (1995) Implantable biohybrid artificial organs. Cell Transplant 4(4):415–436

    Article  Google Scholar 

  • de Vos P, Marchetti P (2002) Encapsulation of pancreatic islets for transplantation in diabetes: the untouchable islets. Trends Mol Med 8(8):363–366

    Article  Google Scholar 

  • de Vos P, Faas MM, Strand B, Calafiore R (2006) Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27(32):5603–5617

    Article  Google Scholar 

  • Desai TA, Chu WH, Tu JK, Beattie GM, Hayek A, Ferrari M (1998) Microfabricated immunoisolating biocapsules. Biotechnol Bioeng 57(1):118–120

    Article  Google Scholar 

  • Desai TA, Hansford D, Ferrari M (1999a) Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications. J Membr Sci 159(1–2):221–231

    Article  Google Scholar 

  • Desai T, Chu W, Rasi G, Sinibaldi-Vallebona P, Guarino E, Ferrari M (1999b) Microfabricated biocapsules provide short-term immunoisolation of insulinoma xenografts. Biomed Microdevices 1(2):131–138

    Article  Google Scholar 

  • Desai TA, Hansford DJ, Ferrari M (2000a) Micromachined interfaces: new approaches in cell immunoisolation and biomolecular separation. Biomol Eng 17(1):23–36

    Article  Google Scholar 

  • Desai TA, Hansford DJ, Leoni L, Essenpreis M, Ferrari M (2000b) Nanoporous anti-fouling silicon membranes for biosensor applications. Biosens Bioelectron 15(9–10):453–462

    Article  Google Scholar 

  • Desai TA, West T, Cohen M, Boiarski T, Rampersaud A (2004) Nanoporous microsystems for islet cell replacement. Adv Drug Deliv Rev 56(11):1661–1673

    Article  Google Scholar 

  • Dunleavy M (1996) Polymeric membranes. A Rev Appl Med Dev Tech 7(4):18–21

    Google Scholar 

  • Fang DZ, Striemer CC, Gaborski TR, McGrath JL, Fauchet PM (2010a) Methods for controlling the pore properties of ultra-thin nanocrystalline silicon membranes. J Phys Condens Matter 22(454134):1–7

    Google Scholar 

  • Fang DZ, Striemer CC, Gaborski TR, McGrath JL, Fauchet PM (2010b) Pore size control of ultrathin silicon membranes by rapid thermal carbonization. Nano Lett 10(10):3904–3908

    Article  Google Scholar 

  • Fissell WH, Dubnisheva A, Eldridge AN, Fleischman AJ, Zydney AL, Roy S (2009) High-performance silicon nanopore hemofiltration membranes. J Membr Sci 326(1):58–63

    Article  Google Scholar 

  • Gaborski TR, Snyder JL, Striemer CC, Fang DZ, Hoffman M, Fauchet PM, McGrath JL (2010) High-performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes. ACS Nano 4(11):6973–6981

    Article  Google Scholar 

  • Gong D, Yadavalli V, Paulose M, Pishko M, Grimes CA (2003) Controlled molecular release using nanoporous alumina capsules. Biomed Microdevices 5(1):75–80

    Article  Google Scholar 

  • Ishimatsu R, Kim J, Jing P, Striemer CC, Fang DZ, Fauchet PM, McGrath JL, Amemiya S (2010) Ion-selective permeability of an ultrathin nanoporous silicon membrane as probed by scanning electrochemical microscopy using micropipet-supported ITIES tips. Anal Chem 82(17):7127–7134

    Article  Google Scholar 

  • Iwata H, Kobayashi K, Takagi T, Oka T, Yang H, Amemiya H, Tsuji T, Ito F (1994) Feasibility of agarose microbeads with xenogeneic islets as a bioartificial pancreas. J Biomed Mater Res 28(9):1003–1011

    Article  Google Scholar 

  • Iwata H, Morikawa N, Fujii T, Takagi T, Samejima T, Ikada Y (1995) Does immunoisolation need to prevent the passage of antibodies and complement? Tranplant Proc 27(6):3224–3226

    Google Scholar 

  • Kang J, Erdodi G, Kennedy JP (2007) Third-generation amphiphilic conetworks. III. Permeabilities and mechanical properties. J Polym Sci A Polym Chem 45(18):4276–4283

    Article  Google Scholar 

  • La Flamme KE, Mor G, Gong D, La Tempa T, Fusaro VA, Grimes CA, Desai TA (2005) Nanoporous alumina capsules for cellular macroencapsulation: transport and biocompatibility. Diabetes Technol Ther 7(5):684–694

    Article  Google Scholar 

  • La Flamme KE, Popat KC, Leoni L, Markiewicz E, La Tempa TJ, Roman BB, Grimes CA, Desai TA (2007) Biocompatibility of nanoporous alumina membranes for immunoisolation. Biomaterials 28(16):2638–2645

    Article  Google Scholar 

  • Lanza RP, Kuhtreiber WM, Chick WL (1995) Encapsulation technologies. Tissue Eng 1(2):181–196

    Article  Google Scholar 

  • Lanza RP, Hayes JL, Chick WL (1996) Encapsulated cell technology. Nat Biotechnol 14(9):1107–1111

    Article  Google Scholar 

  • Leoni L, Desai TA (2004) Micromachined biocapsules for cell-based sensing and delivery. Adv Drug Deliv Rev 56(2):211–229

    Article  Google Scholar 

  • Leoni L, Boiarski A, Desai TA (2002) Characterization of nanoporous membranes for immunoisolation: diffusion properties and tissue effects. Biomed Microdevices 4(2):131–139

    Article  Google Scholar 

  • Li RH (1998) Materials for immunoisolated cell transplantation. Adv Drug Deliv Rev 33(1–2):87–109

    Article  Google Scholar 

  • Lysaght MJ, Frydel B, Gentile F, Emerich D, Winn S (1994) Recent progress in immunoisolated cell therapy. J Cell Biochem 56(2):196–203

    Article  Google Scholar 

  • Mendelsohn A, Desai T (2010) Inorganic nanoporous membranes for immunoisolated cell-based drug delivery. In: José Luis Pedraz and Gorka Orive (eds) Therapeutic applications of cell microencapsulation. Springer, New York, Chapter 10, 104–125

    Google Scholar 

  • Muthusubramaniam L, Lowe R, Fissell W, Li L, Marchant R, Desai T, Roy S (2011) Hemocompatibility of silicon-based substrates for biomedical implant applications. Ann Biomed Eng 39(4):1296–1305

    Article  Google Scholar 

  • Nafea EH, Poole-Warren LA, Marson A, Martens PJ (2011) Immunoisolating semi-permeable membranes for cell encapsulation: focus on hydrogels. J Control Release 154(2):110–122

    Article  Google Scholar 

  • O’Sullivan ES, Vegas A, Anderson DG, Weir GC (2011) Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocr Rev 32(6):827–844

    Article  Google Scholar 

  • Oliva A, Fariña J, Llabrés M (2000) Development of two high-performance liquid chromatographic methods for the analysis and characterization of insulin and its degradation products in pharmaceutical preparations. J Chrom B Biomed Sci Appl 749(1):25–34

    Article  Google Scholar 

  • Paulose M, Prakasam HE, Varghese OK, Peng L, Popat KC, Mor GK, Desai TA, Grimes CA (2007) TiO2 nanotube arrays of 1000 um length by anodization of titanium foil: phenol red diffusion. J Phys Chem C 111(41):14992–14997

    Article  Google Scholar 

  • Paulose M, Peng L, Popat KC, Varghese OK, LaTempa TJ, Bao N, Desai TA, Grimes CA (2008) Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J Membr Sci 319(1–2):199–205

    Article  Google Scholar 

  • Peterson KP, Peterson CM, Pope EJA (1998) Silica sol-gel encapsulation of pancreatic islets. Proc Soc Exp Biol Med 218(4):365–369

    Article  Google Scholar 

  • Popat KC, Mor G, Grimes CA, Desai TA (2004) Surface modification of nanoporous alumina surfaces with poly(ethylene glycol). Langmuir 20(19):8035–8041

    Article  Google Scholar 

  • Pope EA, Braun K, Peterson C (1997) Bioartificial organs I: silica gel encapsulated pancreatic islets for the treatment of diabetes mellitus. J Sol-Gel Sci Tech 8(1–3):635–639

    Google Scholar 

  • Sakai S, Ono T, Ijima H, Kawakami K (2003) Proliferation and insulin secretion function of mouse insulinoma cells encapsulated in alginate/sol-gel synthesized aminopropyl-silicate/alginate microcapsule. J Sol-Gel Sci Tech 28(2):267–272

    Article  Google Scholar 

  • Sakai S, Ono T, Ijima H, Kawakami K (2004) MIN6 cells-enclosing aminopropyl-silicate membrane templated by alginate gels differences in guluronic acid content. Int J Pharm 270(1–2):65–73

    Article  Google Scholar 

  • Scharp DW, Mason NS, Sparks RE (1984) Islet immuno-isolation: the use of hybrid artificial organs to prevent islet tissue rejection. World J Surg 8(2):221–229

    Article  Google Scholar 

  • Schweicher J, Desai TA (2014) Facile synthesis of robust free-standing TiO2 nanotubular membranes for biofiltration applications. J Appl Electrochem 44(3):411–418

    Article  Google Scholar 

  • Schweicher J, Nyitray C, Desai TA (2014) Membranes to achieve immunoprotection of transplanted islets. Front Biosci 19:49–76

    Article  Google Scholar 

  • Sharma S, Johnson RW, Desai TA (2003) Ultrathin poly(ethylene glycol) films for silicon-based microdevices. Appl Surf Sci 206(1–4):218–229

    Article  Google Scholar 

  • Snyder JL, Clark A Jr, Fang DZ, Gaborski TR, Striemer CC, Fauchet PM, McGrath JL (2011) An experimental and theoretical analysis of molecular separations by diffusion through ultrathin nanoporous membranes. J Membr Sci 369(1–2):119–129

    Article  Google Scholar 

  • Stewart MP, Buriak JM (2000) Chemical and biological applications of porous silicon technology. Adv Mater 12(12):859–869

    Article  Google Scholar 

  • Striemer CC, Gaborski TR, McGrath JL, Fauchet PM (2007) Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445(7129):749–753

    Article  Google Scholar 

  • Swan EEL, Popat KC, Grimes CA, Desai TA (2005) Fabrication and evaluation of nanoporous alumina membranes for osteoblast culture. J Biomed Mater Res A 72A(3):288–295

    Article  Google Scholar 

  • Wilson JT, Chaikof EL (2008) Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv Drug Deliv Rev 60(2):124–145

    Article  Google Scholar 

  • Zhang M, Desai T, Ferrari M (1998) Proteins and cells on PEG immobilized silicon surfaces. Biomaterials 19(10):953–960

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Schweicher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Schweicher, J., Desai, T.A. (2014). Porous Silicon in Immunoisolation and Bio-filtration. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-05744-6_94

Download citation

Publish with us

Policies and ethics