Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 555))

Abstract

Digital forensics research includes several stages. Once we have collected the data the last goal is to obtain a model in order to predict the output with unseen data. We focus on supervised machine learning techniques. This chapter performs an experimental study on a forensics data task for multi-class classification including several types of methods such as decision trees, bayes classifiers, based on rules, artificial neural networks and based on nearest neighbors. The classifiers have been evaluated with two performance measures: accuracy and Cohen’s kappa. The followed experimental design has been a 4-fold cross validation with thirty repetitions for non-deterministic algorithms in order to obtain reliable results, averaging the results from 120 runs. A statistical analysis has been conducted in order to compare each pair of algorithms by means of t-tests using both the accuracy and Cohen’s kappa metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Caddy, B.: Forensic Examination of Glass and Paint: Analysis and Interpretation. Taylor & Francis, London (2011)

    Google Scholar 

  2. Mumford, C.L., Jain, L.C. (eds.): Computational Intelligence. ISRL, vol. 1. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  3. Popescu, A.C., Farid, H.: Statistical Tools for Digital Forensics. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 128–147. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Kessler, G.C.: Advancing the Science of Digital Forensics. Computer 45(12), 25–27 (2012)

    Article  Google Scholar 

  5. Stuart, B.H.: Forensic Analytical Techniques. John Wiley & Sons, West Sussex (2013)

    Google Scholar 

  6. Curran, J.M., Hicks, T.N., Buckleton, J.S.: Forensic Interpretation of Glass Evidence. CRC Press, Boca Raton (2000)

    Google Scholar 

  7. Newton, A.W.N., Kitto, L., Buckleton, J.S.: A study of the performance and utility of annealing in forensic glass analysis. Forensic Science International 155, 119–125 (2005)

    Article  Google Scholar 

  8. Winstanley, R., Rydeard, C.: Concepts of annealing applied to small glass fragments. Forensic Science International 29, 1–10 (1985)

    Article  Google Scholar 

  9. Terry, K.W., van Riessen, A., Lynch, B.F., Vowles, D.J.: Quantitative analysis of glasses used within Australia. Forensic Science International 25, 19–34 (1984)

    Article  Google Scholar 

  10. Zadora, G.: Classification of Glass Fragments Based on Elemental Composition and Refractive Index. Journal of Forensic Science 54(1), 49–59 (2009)

    Article  Google Scholar 

  11. Ahmad, U.K., Asmuje, N.F., Ibrahim, R., Kamaruzamanc, N.U.: Forensic Classification of Glass Employing Refractive Index Measurement. Malaysian Journal of Forensic Sciences 3(1), 1–4 (2012)

    Google Scholar 

  12. Zadora, G., Brozek-Mucha, Z., Parczewski, A.: A classification of glass microtraces. Problems of Forensic Sciences XLVII, 137–143 (2001)

    Google Scholar 

  13. Grainger, M.N.C., Manley-Harris, M., Coulson, S.: Classification and discrimination of automotive glass using LA-ICP-MS. Journal of Analytical Atomic Spectrometry 27, 1413–1422 (2012)

    Article  Google Scholar 

  14. Uzkent, B., Barkana, B.D., Cevikalp, H.: Non-speech environmental sound classification using SVMs with a new set of features. International Journal of Innovative Computing, Information and Control 8(5B), 3511–3524 (2012)

    Google Scholar 

  15. Bottrell, M.C.: Forensic Glass Comparison: Background Information Used in Data Interpretation. Forensic Science Communications 11(2) (2009)

    Google Scholar 

  16. Koons, R.D., Buscaglia, J., Bottrell, M., Miller, E.T.: Forensic glass comparisons. In: Saferstein, R. (ed.) Forensic Science Handbook, 2nd edn., vol. I, pp. 161–213. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  17. Evett, I.W., Spiehler, E.J.: Rule induction in forensic science. In: Knowledge Based Systems in Government, pp. 152–160. Halsted Press, London (1988)

    Google Scholar 

  18. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2010), http://archive.ics.uci.edu/ml

  19. Buscema, M.: Artificial Adaptive Systems in Data Visualization: Proactive Data. In: Buscema, M., Tastle, W. (eds.) Intelligent Data Mining in Law Enforcement Analytics: New Neural Networks Applied to Real Problems, pp. 51–88 (2013)

    Google Scholar 

  20. Parvin, H., Minaei-Bidgoli, B., Shahpar, H.: Classifier Selection by Clustering. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ben-Youssef Brants, C., Hancock, E.R. (eds.) MCPR 2011. LNCS, vol. 6718, pp. 60–66. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Murty, M.N., Devi, V.S.: Pattern Recognition. An Algorithmic Approach. Universities Press (India), Pvt. Ltd., London (2011)

    MATH  Google Scholar 

  22. Dougherty, G.: Pattern Recognition and Classification: An Introduction. Springer, New York (2013)

    Book  Google Scholar 

  23. Murthy, S.K.: Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery 2, 345–389 (1998)

    Article  Google Scholar 

  24. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  25. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees. Wadsworth Int. Group, Belmont (1984)

    MATH  Google Scholar 

  26. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann Publishers, San Francisco (1998)

    Google Scholar 

  27. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, Waltham (2011)

    Google Scholar 

  28. Cohen, W.: Fast effective rule induction. In: Proc. of the 12th Int. ICML Conf., pp. 115–123 (1995)

    Google Scholar 

  29. Michie, D., Spiegelhalter, D.J.: Machine Learning, Neural and Statistical Classification. Ellis Horwood, New York (1994)

    MATH  Google Scholar 

  30. Haykin, S.O.: Neural Networks and Learning Machines. Prentice Hall, Upper Saddle River (2009)

    Google Scholar 

  31. Bishop, M.: Neural Networks for Pattern Recognition. Oxford University Press, New York (1995)

    Google Scholar 

  32. Howlett, R.J., Jain, L.C.: Radial Basis Function Networks 1: Recent Developments in Theory and Applications. Springer, Heidelberg (2001)

    Book  Google Scholar 

  33. Fix, E., Hodges, J.: Discriminatory analysis, nonparametric discrimination: consistency properties. Tech. Rep. 4, USAF School of Aviation Medicine, Randolph Field, Texas (1951)

    Google Scholar 

  34. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  35. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley Longman Publishing Co., Boston (2005)

    Google Scholar 

  36. Boularias, A., Chaib-draa, B.: Apprenticeship learning with few examples. Neurocomputing 104, 83–96 (2013)

    Article  Google Scholar 

  37. Bargiela, A., Pedrycz, W.: A model of granular data: a design problem with the Tchebyschev FCM. Soft Computing 9(3), 155–163 (2005)

    Article  MATH  Google Scholar 

  38. Hjorth, J.S.U.: Computer intensive statistical methods: Validation model selection and bootstrap. Chapman and Hall, London (1994)

    MATH  Google Scholar 

  39. Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (IJCAI 1995), Montreal, Quebec, Canada, vol. 2, pp. 1137–1145 (1995)

    Google Scholar 

  40. Flach, P.: Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press, United Kingdom (2012)

    Book  Google Scholar 

  41. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, USA (2011)

    Google Scholar 

  42. Cohen, J.: A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1), 37–46 (1960)

    Article  Google Scholar 

  43. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

    Article  Google Scholar 

  44. Tallón-Ballesteros, A.J., Hervás-Martínez, C., Riquelme, J.C., Ruiz, R.: Feature selection to enhance a two-stage evolutionary algorithm in product unit neural networks for complex classification problems. Neurocomputing 114, 107–117 (2013)

    Article  Google Scholar 

  45. Nisbet, R., Elder, J.F., Miner, G.: Handbook of Statistical Analysis and Data Mining Applications. Academic Press, Canada (2009)

    MATH  Google Scholar 

  46. Silva, J.A., Hruschka, E.R.: An experimental study on the use of nearest neighbor-based imputation algorithms for classification tasks. Data & Knowledge Engineering 84, 47–58 (2013)

    Article  Google Scholar 

  47. Wang, Y., Cao, F., Yuan, Y.: A study on effectiveness of extreme learning machine. Neurocomputing 74, 2483–2490 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Tallón-Ballesteros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tallón-Ballesteros, A.J., Riquelme, J.C. (2014). Data Mining Methods Applied to a Digital Forensics Task for Supervised Machine Learning. In: Muda, A., Choo, YH., Abraham, A., N. Srihari, S. (eds) Computational Intelligence in Digital Forensics: Forensic Investigation and Applications. Studies in Computational Intelligence, vol 555. Springer, Cham. https://doi.org/10.1007/978-3-319-05885-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05885-6_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05884-9

  • Online ISBN: 978-3-319-05885-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics